Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>THE RS232 INTERFACE</td>
<td>3</td>
</tr>
<tr>
<td>Cable Connections</td>
<td>3</td>
</tr>
<tr>
<td>Interface Settings</td>
<td>3</td>
</tr>
<tr>
<td>THE USB INTERFACE</td>
<td>4</td>
</tr>
<tr>
<td>Using the Arroyo Instruments USB Interface</td>
<td>4</td>
</tr>
<tr>
<td>Loading the Software Drivers</td>
<td>4</td>
</tr>
<tr>
<td>Cable Connections and Interface Settings</td>
<td>4</td>
</tr>
<tr>
<td>THE NETWORK INTERFACE</td>
<td>4</td>
</tr>
<tr>
<td>Using the Arroyo Instruments Network Interface</td>
<td>4</td>
</tr>
<tr>
<td>Loading the COM Port Redirector Software</td>
<td>5</td>
</tr>
<tr>
<td>ARROYO CONTROL</td>
<td>5</td>
</tr>
<tr>
<td>USING COMMANDS</td>
<td>6</td>
</tr>
<tr>
<td>IEE-488.2 Commands</td>
<td>6</td>
</tr>
<tr>
<td>Device-Independent Commands</td>
<td>6</td>
</tr>
<tr>
<td>Device-Dependent Commands</td>
<td>6</td>
</tr>
<tr>
<td>Laser Command List</td>
<td>6</td>
</tr>
<tr>
<td>TEC Command List</td>
<td>7</td>
</tr>
<tr>
<td>Command Syntax and Concatenation</td>
<td>8</td>
</tr>
<tr>
<td>Command Paths</td>
<td>8</td>
</tr>
<tr>
<td>Numeric Substitutions</td>
<td>9</td>
</tr>
<tr>
<td>WORKING WITH RADIXES AND HEX FLOATS</td>
<td>9</td>
</tr>
<tr>
<td>WORKING WITH SCRIPTS</td>
<td>10</td>
</tr>
<tr>
<td>EVENT AND CONDITION REPORTING</td>
<td>11</td>
</tr>
<tr>
<td>Instrument Status Reporting Structure</td>
<td>12</td>
</tr>
<tr>
<td>OPERATION COMPLETE DEFINITION</td>
<td>13</td>
</tr>
<tr>
<td>PRIMARY AND AUXILIARY SENSORS</td>
<td>13</td>
</tr>
<tr>
<td>ALPHABETICAL LIST OF COMMANDS</td>
<td>14</td>
</tr>
<tr>
<td>ERROR MESSAGES</td>
<td>92</td>
</tr>
</tbody>
</table>
Introduction

The *Computer Interfacing Manual* provides a complete summary of all commands supported by the Arroyo Instruments line of products. While in remote control mode, the computer interface allows full operation of the instrument, plus advanced features only available via the computer interface.

You will find in reviewing the command set that it is largely compatible with both ILX and Newport laser diode drivers and temperature controllers. In fact, for many applications, you can use an Arroyo Instruments controller in place of a Newport or ILX instrument with little to no change in the commands used to control the instrument.

The RS232 Interface

Some instruments provide a RS232 serial interface, a common, easy-to-use interface for controlling the instrument. With baud rates up to 115k baud, high-speed control and measurement is possible.

Cable Connections

The RS232 interface is a male DB9 pinned identically to a standard PC RS232 port, so a female/female cable in NULL modem configuration (transmit and receive pins swapped) is required. The full pin-out is described below:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Receive</td>
</tr>
<tr>
<td>3</td>
<td>Transmit</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>Shell</td>
<td>Earth ground</td>
</tr>
</tbody>
</table>

RS232 Connector (DB-9 Male)

Depending on if you are connecting to a DB9 or DB25 on the PC, follow the pin-to-pin assignments in the table below.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>PC DB9</th>
<th>PC DB25</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Instrument to PC pin assignment

Interface Settings

- **Baud Rate**: The instrument will operate at 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 baud rates. The baud rate can be set through the instrument’s menu, with a factory default of 9600, and must match the setting on the PC.
- **Parity**: None
- **Data Bits**: 8
- **Stop Bits**: 1
- **Flow Control**: None

Ensure to disable flow control. Failure to do so will prevent the instrument from sending data back to the PC.
The USB Interface

Because of its speed, expandability, and commonality, the USB interface has become the interface of choice for newer PC-connected devices. Unlike GPIB, USB uses inexpensive cables and allows up to 127 devices to be connected to a single USB master.

Using the Arroyo Instruments USB Interface

To keep complexity to a minimum, once you have installed the USB drivers, the instrument will appear as a virtual serial port that you can use just like a normal serial port. In this way, you can communicate to the instrument without requiring special software modifications to your existing applications.

Loading the Software Drivers

Unlike the RS232 interface, using the USB interface requires software drivers (provided on the CD with your instrument or available over the Microsoft Windows Update service) to be loaded onto your PC. Follow the instructions in your instrument manual for installing the USB drivers.

Once a COM port has been assigned to an instrument, it will continue to use the same COM port unless it is reassigned through the Control Panel.

Cable Connections and Interface Settings

The Arroyo controller uses a full-size USB Type B socket. You may use any USB 1.1 or 2.0 certified cable. The baud rate is fixed at 38,400.

- Baud Rate: 38400
- Parity: None
- Data Bits: 8
- Stop Bits: 1
- Flow Control: None

Ensure to disable flow control. Failure to do so will prevent the instrument from sending data back to the PC.

The Network Interface

Some instruments, such as the 7000 Series MultiSource Controllers, are equipped with a Ethernet network interface. For larger installation, the network connectivity can be advantageous over traditional USB or RS232-connected instruments.

Using the Arroyo Instruments Network Interface

The network interface on the MultiSource can be used in one of two ways: a Telnet connection to port 10001 or using the COM Port Redirector software to create a virtual COM port (VCP).

The Telnet connection requires no additional software, but the program making the connection must be able to communicate over network connections.
Loading the COM Port Redirector Software

A simpler approach is to use the COM Port Redirector (CPR) software, which will create a virtual COM port much like the USB connection. No specialized networking support is required, and the same program that can communicate over the USB VCP can also be used with the network VCP.

To install the CPR software, either download from the Arroyo Instruments web site, or you can find it on the CD you received with the MultiSource. Follow the on-screen prompts to install the software.

Once installed, start the software. You will also find instructions along with the installation program on how to identify and install the virtual COM port. Follow those instructions to add a new COM port and connect it to the IP address of the MultiSource.

In most cases the CPR software will detect the MultiSource when you click Search for Devices, but if you need to manually determine the IP Address information, you can do so by reviewing the IP settings in the Network menu of the MultiSource. If you have multiple MultiSource controllers on your network, the model number and serial number are included in the unit description to help identify the specific unit.

Arroyo Control

ArroyoControl is a free software program that is included on the disc that comes with your instrument, and provides remote control of all Arroyo Instruments’ controllers. If you are having problems communicating with the instrument, it can be a useful diagnostic step to install and use ArroyoControl to see if the program can successfully communicate with the instrument. If it does, then it demonstrates that the connection and drivers are properly installed.
Using Commands

While the instrument does not have a GPIB interface, the command structure and parsing were developed around the IEEE-488.2 standard. Most IEEE-488.2 commands are supported, and the command/response format is consistent with the standard.

When sending commands to the instrument, you must terminate the command string with a carriage return (ASCII 13) or line feed (ASCII 10, or both. The instrument will not start processing a command, or go into remote mode until it has received a carriage return or feed command terminator.

Commands are grouped into two major categories: device-independent and device-dependent commands. Device-independent commands include all the IEEE-488.2 supported commands plus other commands that are universal across all instruments. Device-dependent commands are specific to a class of instruments, such as TEC commands for the temperature controller. Not all instruments support every command. Review the command for instrument-specific differences.

IEE-488.2 Commands

The following device-independent commands are supported by most instruments:

- *CLS
- *ESE
- *ESE?
- *ESR?
- *IDN?
- *IST?
- *OPC
- *OPC?
- *PRE
- *PRE?
- *PSC
- *PSC?
- *RCL
- *RST
- *SAV
- *SRE
- *SRE?
- *STB?
- *WAI

Device-Independent Commands

The following device-independent commands are supported by most instruments:

- BAUD
- BEEP
- BEEP?
- BRIGHT
- BRIGHT?
- CALdate?
- DELAY
- DIO:IN?
- DIO:OUT?
- DIO:OUTMODE
- DIO:OUTMODE?
- EQUIPment?
- ERRORLED
- ERRORLED?
- ERRORLEDMODE
- ERRORLEDMODE?
- ERRors?
- ERRSTR?
- HEXFLOAT
- HEXFLOAT?
- LOCAL
- MESsage
- MESsage?
- ONDELAY
- ONDELAY?
- RADix
- REMSET
- REMSET?
- REMERR
- REMERR?
- SCRIPT:GET
- SCRIPT:GO
- SCRIPT:PUT
- SN?
- TERM
- TERMINAL
- TIME?
- TIMER
- VER?

Device-Dependent Commands

Device-dependent commands are specific to a class of instruments, such as the temperature controller.

Many of the device dependent commands have two commands that do the same thing. For example, LASer:I? and LASer:LDI? perform the same operation. The “I”, “IPD”, and “Ppd” forms of commands are considered obsolete but are included for compatibility reasons.

Laser Command List

<table>
<thead>
<tr>
<th>LASer:AUX?</th>
<th>LASer:CHAN</th>
<th>LASer:DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASer:CABLER</td>
<td>LASer:CHAN?</td>
<td>LASer:DC?</td>
</tr>
<tr>
<td>LASer:CABLER?</td>
<td>LASer:COND?</td>
<td>LASer:DEC</td>
</tr>
<tr>
<td>LASer:CALMD (CALPD)</td>
<td>LASer:CONST</td>
<td>LASer:DELAYIN</td>
</tr>
<tr>
<td>LASer:CALMD? (CALPD?)</td>
<td>LASer:CONST?</td>
<td>LASer:DELAYIN?</td>
</tr>
</tbody>
</table>
LASer:DELAYOUT
LASer:DELAYOUT?
LASer:DISplay
LASer:DISplay?
LASer:ENABLE:COND
LASer:ENABLE:COND?
LASer:ENABLE:Event
LASer:ENABLE:Event?
LASer:ENABLE:OUTOFF
LASer:ENABLE:OUTOFF?
LASer:Event?
LASer:F
LASer:F?
LASer:FIXTURELED
LASer:FIXTURELED?
LASer:INC
LASer:INTCONT
LASer:INTCONT?
LASer:LDI (I)
LASer:LDI? (I?)
LASer:LDIRES
LASer:LDIRES?
LASer:LDIRESAVAIL?
LASer:LDV
LASer:LDV?
LASer:LIM:LDI (I)
LASer:LIM:LDI? (I?)
LASer:LIM:LDV
LASer:LIM:LDV?
LASer:LIM:MDI (IPD)
LASer:LIM:MDI? (IPD?)
LASer:LIM:MDP (Ppd)
LASer:LIM:MDP? (Ppd?)
LASer:LIM:RHIgh
LASer:LIM:RHIgh?
LASer:LIM:RLOw
LASer:LIM:RLOw?
LASer:LIM:THIgh
LASer:LIM:THIgh?
LASer:LIM:TLOw
LASer:LIM:TLOw?
LASer:MODE
LASer:MODE:BURST
LASer:MODE:ICW (CW)
LASer:MODE:ICW?
LASer:MODE:ILBW (I)
LASer:MODE:ILBW?
LASer:MODE:LDV
LASer:MODE:LDV?
LASer:MODE:MDI (IPD)
LASer:MODE:MDI? (IPD?)
LASer:MODE:MDP (Ppd)
LASer:MODE:MDP? (Ppd?)
LASer:MODE:PULSE
LASer:MODE:R
LASer:MODE:TRIG
LASer:MODE:TRIG?
LASer:MODE:V
LASer:MODE:V?
LASer:MODE:ITE
LASer:MODE:ITE?
LASer:MODE:T
LASer:MODE:T?
LASer:MODE:R
LASer:MODE:R?
LASer:PDBias
LASer:PDBias?
LASer:PW
LASer:PWF
LASer:PWP
LASer:QCWHOLD
LASer:QCWHOLD?
LASer:QCWCOUNT
LASer:QCWCOUNT?
LASer:R
LASer:R?
LASer:RANGE
LASer:RANGE?
LASer:RAMP
LASer:RAMP?
LASer:SET:LDI? (I?)
LASer:SET:LDV? (Ppd?)
LASer:SET:MDI? (IPD?)
LASer:SET:MDP? (Ppd?)
LASer:SET:MDP?
LASer:SET:MDP: (Ppd?)
LASer:SD?
LASer:STEP
LASer:STEP?
LASer:STB
LASer:STB?
LASer:SUBRANGE
LASer:SUBRANGE?
LASer:USERCAL:EDIT
LASer:USERCAL:EDIT?
LASer:USERCAL:GET?
LASer:USERCAL:GET?
LASer:USERCAL:GETALL?
LASer:USERCAL:PUT
LASer:USERCAL:RESET
LASer:VSENSE
LASer:VSENSE?
LASer:VSENSE?
LASer:VSENSE
LASer:VSENSE
LASer:VSENSE
LASer:VSENSE
LASer:VSENSE
LASer:VSENSE

TEC Command List

TEC:ACTIVESENsor
TEC:ACTIVESENsor?
TEC:ANALOG:MODE
TEC:ANALOG:MODE?
TEC:ANALOG:OUT
TEC:ANALOG:OUT?
TEC:ANALOG:RES
TEC:ANALOG:RES?
TEC:ANALOG:THIGH
TEC:ANALOG:THIGH?
TEC:ANALOG:LOW
TEC:ANALOG:LOW?
TEC:AUTOON
TEC:AUTOON?
TEC:AUTOTUNE
TEC:AUTOTUNE?
TEC:AUTOTUNES?TE?TE
TEC:CALIBER
TEC:CALIBER?
TEC:CALIBER?
TEC:CALIBER?
TEC:CHAN
TEC:CHAN?
TEC:COND?
TEC:CONST
TEC:CONST?
Command Syntax and Concatenation

All commands use a common syntax for constructing the command and parameter passing. Commands are case-insensitive, and some commands have optional characters, which are denoted as lower-case characters in the command definition. For example, LAser:EVEnt? can be shortened to LAS:EVE? This allows for command abbreviation and therefore reduced communication times.

The input buffer of the instrument allows for up to 128 characters to be received before a command overflow error occurs. If a command overflow does occur, the entire buffer is discarded and an E-102 (Message too long) error will occur.

If a command requires one or more parameters, place a space between the command and the first parameter, then use a comma to separate additional parameters. For example, the laser tolerance command might look like:

```
LASER:TOLERANCE 10,25
```

It is also possible to concatenate multiple commands together as a single communication to the instrument. By using a semicolon, multiple commands can be sent to the instrument at once, but command processing will not start until all commands and the command terminator have been received. For example, to set the laser set point to 10mA and turn the output on, the command would look like:

```
LASER:LDI 10; LASER:OUTPUT 1
```

Command Paths

The command set is structured in a tree-like organization, where commands for a common device or function are grouped together. For example, all commands specific to the laser driver start with a “LASer:” prefix. This is called the command path.

When issuing multiple concatenated commands to the instrument, it “remembers” the command path of the previous command, and allows you to omit the common path from the second command. Using the example above where the set point was changed to 10mA and the output turned on, it could also be shortened by omitting the second “LASer:” portion because when the OUTPUT command is processed, the command parser “remembers” its position in the command tree and starts looking for the command at that level. The command could therefore be shortened to this:

```
LASER:LDI 10;OUT 1
```

Removing the optional characters from the commands, you can further shorten the command to:

```
LAS:LDI 10;OUT 1
```

In the case where the same command exists at the last command level and in one or more levels above, you can start the command with a colon (:) to force the command parser to start at the root. For example, take the following command:

```
LASER:MODE:LDV;LDV 0.5
```
At first glance, it appears to set the laser into voltage control mode and then set the set point to 0.5V. However, after processing the first command, the parser is at the “LASER:MODE:” level in the command tree and the second “LDV” command will match the “LASER:MODE:LDV” command, basically changing modes twice. To force the parser to interpret the command the way we intended, compose the second command after the semicolon like this:

`LASER:MODE:LDV; :LASER:LDV 0.5`

Numeric Substitutions

For command readability, you can also substitute alternate values for zero (0) and one (1). “0” can be replaced by “OFF”, “NEW”, or “FALSE”. “1” can be replaced by “ON”, “OLD”, or “TRUE”.

Working with Radixes and Hex Floats

It is possible to change the base coding of decimal values to binary, octal, or hexadecimal (hex) by using the RADIX command. Depending on your programming interface, it may be easier to send or receive data in one of these alternate notations.

The RADIX command only affects data sent by the instrument to the PC; the instrument will always accept values in alternate base values.

Hex values are prefixed with a ‘#H’, octal with a ‘#O’, and binary with a ‘#B’. For example, the decimal value 47635 would be represented as following:

- **Binary:** #B1011101000010011
- **Octal:** #O135023
- **Hexadecimal:** #HBA13

In addition to the binary, octal, and hex, floating point numbers can be transmitted and received in a ‘ASCII-hex’ notation. Transmission of floating-point values over plain text interfaces (such as is used on Arroyo controllers) invariably leads to rounding of the floating point number simply because the plain text interface does not (typically) transmit the full resolution a floating point number is capable of. This does not normally affect operation, and commands to the Arroyo controllers can always include additional resolution to mitigate this.

However, in some applications, it is useful to have the exact floating point value, and the hex float mode enables this. When operating in hex float mode, floating point numbers are transmitted in IEEE 754 notation, starting with a ‘#E’ prefix.

For example, the single-precision float point value 123.45 would be encoded as #E42F6E66. For double-precision values, the hex data would be twice the length, and 123.45 in double-precision hex data would be #E405EDCCCCCCCCCCD.

While the instrument will always accept floating point numbers encoded in hex float, the HEXFLOAT command enabled the transmission of hex float values from the instrument to the PC for those values that are represented in floating point notation (such as measurements and set points). Non-floating point numbers will continue to transmit normally (or in alternate base if selected by the RADIX command).

Working with Scripts

Script support was added with version 2 of the firmware. It is normally used to load scripts for execution by the instrument’s function keys, but scripts can also be executed remotely.

A script is a series of commands, anything you can normally send to the instrument, but stored in memory for execution at a later time. A script can contain any valid command except:

- DELAY
- *WAI
- SCRIPT:GO
- SCRIPT:PUT

A script can be a maximum of 200 characters and up to four scripts can be stored.

A script can contain more than one command, but there is a slight difference when concatenating commands as compared to normal communications: instead of using a semicolon (;) to separate commands, you must use a carat (^). For example, a script to change the set point to 50mA and turn the output on, stored in position 1, would be stored with the following command:

```
SCRIPT:PUT 1, LAS:I 50 ^ LAS:OUT ON
```

Notice that a carat separates the two commands, not a semicolon. You can then execute the script remotely with the SCRIPT:GO command:

```
SCRIPT:GO 1
```

If your instrument has function keys, you can also assign the script to the function key.

When updating scripts, the instrument will pause for approximately 125ms to perform the storage process. During this time, any communications to the instrument is ignored. It is recommended you include a 150ms delay after sending an update command to prevent communications errors. Alternatively, you can concatenate a query commands (such as ERR?) to the script update command and wait for the reply (e.g., "*RST 1;ERR?").

In addition, instruments which implement a software-controlled loop, such as temperature controllers, will also pause control during this window. Timing is narrow, so it will likely have little impact, but a small perturbation of temperature readings may be observed. To avoid this issue, update scripts prior to operating enabling the output.

Commands that are affected by this delay are:

```
*RST 1
SCRIPT:PUT
```

Note that a *RST (or *RST 0) is not affected, as scripts are only reset when the “1” parameter is included in the command.

You can terminate an executing script by sending a Ctrl-X (0x18) character. An E-128 error will be generated. If no script is running, the character will be ignored and no error generated.
Event and Condition Reporting

In order to allow for quick summary reporting of device status, the instruments contain a powerful status reporting structure, which can be configured to report status at several levels of the instrument’s operation. Using the various enable registers, a summary of the instrument’s operation is made into the status byte register, allowing the control application to query only the status byte register, and if no pertinent events or conditions are being reported, no other status checking is needed.

In some cases, condition and event registers may appear to report the same thing, but it is how the registers work that make them unique from each other. A condition register will report the status of the instrument at the moment in time when the condition register is queried. For fast conditions (such as laser over-voltage), it’s not possible to detect the condition no matter how fast you query the instrument. This is where event registers come in: they “remember” their state until you read them. For example, if a laser goes into current limit, then out of current limit, its condition register will indicate current limit only while it is in that state. The event register, however, will set its current limit bit, and that bit will remain set until the event register is read. All event registers, once read, will automatically reset themselves to zero.

For example, if you wanted to monitor if the laser was in current or power limit, if the output turned off, or if there were any error in the error queue, you could enable reporting of current or power limit conditions in the LASer:COND register, and enable the output status change event in the LASer:EVEnt register. By querying the status byte register (*STB?), no further action is necessary if the laser event, laser condition, and error available bits were all zero. If you did not use the status reporting system, you would need to issue at least three commands to do the same thing.

At first glance, the reporting structure pictured below can seem complex, but it is actually quite simple. For each register, there is a corresponding enable register. For example, the laser condition register (LASer:COND) has a laser condition enable register (LASer:ENABle:COND). The two registers are ANDed together, and if the resulting value is non-zero, then the corresponding bit in the status byte register is turned on (in this case, bit 3, the laser condition summary bit).

By reviewing your application needs and the reporting capabilities of the system, you can determine what conditions or event you want to enable and appropriately set each of the enable registers.

In USB and RS232 applications, the Service Request Enable Register, the Parallel Poll Enable Register, and the IST bit have little value because the Status Byte Register will contain more detail, but these registers have been implemented for greater compatibility with existing software applications.
Instrument Status Reporting Structure

- **Standard Event Status Register**
 - *ESE?*
 - *ESE?*
 - *ESE?*

- **Status Byte Register**
 - *STB?*

- **Service Request Enable Register**
 - *SRE <enable>*

- **Parallel Poll Enable Register**
 - *PRE <enable>*

- **Laser Condition Status Enable Register**
 - LASer:ENABle:COND <enable>
 - LASer:ENABle:COND?

- **Laser Event Status Enable Register**
 - LASer:ENABle:EVEnt <enable>
 - LASer:ENABle:EVEnt?

- **TEC Condition Status Enable Register**
 - TEC:ENABle:COND <enable>
 - TEC:ENABle:COND?

- **TEC Event Status Register**
 - TEC:EVEnt?

- **TEC Condition Status Register**
 - TEC:COND?

- **Laser Condition Status Register**
 - LASer:COND?

- **Laser Event Status Register**
 - LASer:EVEnt?

- **TEC Event Status Register**
 - TEC:EVEnt?

- **Laser Event Status Register**
 - LASer:EVEnt?
Operation Complete Definition

The term “Operation Complete” is a summary condition which indicates that the instrument has reached a stable, idle operating condition. This includes reaching temperature equilibrium, completing any ramp functions, and other, similar actions which take some amount of time to complete.

This condition is reported in bit 0 of the Standard Event Status Register as the Operation Complete flag, and is also used to control the execution of the *OPC, *OPC?, and *WAI commands. Using the *ESE command, the user can also update bits of the Status Byte Register.

Operation Complete is defined as:

1. The laser controller is idle (no ramp functions).
2. The TEC controller is idle (no ramp functions).
3. No EPROM (non-volatile) memory write cycles are in progress.
4. No delay timeout clocks are running.
5. No calibration routines are running.
6. Laser output is off, or it is on and within tolerance.
7. TEC output is off, or it is on and within tolerance.

Primary and Auxiliary Sensors

Many of the TEC commands include a parameter called “sensor index”. This index is used to select the sensor to which the command will change or query.

Some commands are specific to primary or auxiliary sensors. A primary sensor is one that can be used in the control loop to control the temperature of the mount or device. An auxiliary sensor is one that can only be used to monitor a temperature sensor.

For instruments with only a single temperature sensor input, that sensor input is the primary and active sensor, and the sensor index will always be one.

For multi-sensor controllers with more than one primary sensor, only one sensor input can be used to control the temperature, and this is considered the “active” sensor. Other primary sensors not involved in temperature control are called “non-active” primary sensors.

For many commands, the sensor index argument is optional. If omitted from the command, then the sensor index of the primary active sensor is used. This maintains backwards compatibility with existing control programs.
Alphabetical List of Commands

*CLS

Synopsis
Clear status registers command

Syntax
*CLS

Details
Clears the standard event status register, all event registers, and the error queue.

See Also
ESR?, ERR?, *IST?, *STB?

*ESE

Synopsis
Set the Event Status Register Enable

Syntax
*ESE mask

Details
See the ESR? query for a definition of the individual bits with the mask parameter. The mask is logically ANDed with the ESR register, and if any of the resulting bits are high, bit 5 of the STB register (Event Status Summary) is set.

See Also
*ESE?, ESR?, *STB?

*ESE?

Synopsis
Query the Event Status Register Enable

Syntax
*ESE?

Details
Returns the value of the Event Status Register Enable. See the ESR? query for a definition of the individual bits with the response value.

See Also
*ESE, ESR?, *STB?

*ESR?

Synopsis
Query the Event Status Register

Syntax
*ESR?

Details
Returns the value of the Event Status Register. As with all event registers, after the value has been read, the register will be set to zero.

<table>
<thead>
<tr>
<th>Response</th>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR</td>
<td>0</td>
<td>1</td>
<td>Operation complete</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>Parser idle: the parser buffer is empty</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>Query error (errors 300 through 399)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>Device dependent error (errors 400 through 599)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>Execution error (errors 200 through 299)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>32</td>
<td>Command error (errors 100 through 199)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>Not Used</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>128</td>
<td>Power on: the unit has been powered on since the last time this register was read or cleared.</td>
</tr>
</tbody>
</table>
Operation complete indicates when the controller has completed all pending operations and the outputs are stable.

See Also *ESE, ESE?, *OPC, *STB?

*IDN?
Synopsis Query the instrument identification

Syntax *IDN?

Details Returns the identification string for the instrument in the following format:

Arroyo Model SN Ver Build

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
</table>
| Model | The model number of the product, such as ‘4205’.
| SN | The serial number.
| Ver | The firmware version.
| Build | Internal build number.

*IST?
Synopsis Query Individual Status

Syntax *IST?

Details Returns the value of the ‘ist’ bit within the reporting structure.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ist</td>
<td>0</td>
<td>ist false</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ist true</td>
</tr>
</tbody>
</table>

See Also *PRE, *STB

*OPC
Synopsis Operation Complete Command

Syntax *OPC

Details Sets the operation complete bit in the event status register when the operation complete state is true.

See Also *ESR?, *OPC?, *WAI

*OPC?
Synopsis Operation Complete Query

Syntax *OPC?

Details Returns a “1” when the operation complete state is true. The “1” will be inserted asynchronously upon operation complete.

See Also *OPC, *WAI
*PRE
Synopsis Set the Parallel Poll Enable Register
Syntax *PRE mask
Details See the STB? query for a definition of the individual bits with the mask parameter. The mask is logically ANDed with the Status Byte Register, and if any of the resulting bits are high, the 'ist' bit is set.
See Also *PRE?, *STB?

*PRE?
Synopsis Query the Parallel Poll Enable Register
Syntax *PRE?
Details Returns the value of the Parallel Poll Enable register. See the STB? query for a definition of the individual bits with response value.
See Also *PRE, *STB?

*PSC
Synopsis Set the Power-On Status Clear
Syntax *PSC enable
Details Enables or disables the power-on clearing of event and condition status enable registers.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>1</td>
<td>All event and condition status enable registers are cleared at power-up.</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>All event and condition status enable registers are restored their last power-off state.</td>
</tr>
</tbody>
</table>
See Also *PSC?

*PSC?
Synopsis Query the Power-On Status Clear
Syntax *PSC?
Details Returns the value of the Power-On Status Clear register. See the *PSC command for a definition of the response value.
See Also *PSC

*RCL
Synopsis Recall command
Syntax *RCL bin
Details

The *RCL command is used to restore the unit from a saved configuration bin. Bin 0 is a special case, and behaves identically to a *RST command. A configuration recall from an empty bin will generate an error.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>0</td>
<td>Reset to factory configuration, same as *RST command.</td>
</tr>
<tr>
<td></td>
<td>1 to 4</td>
<td>Recall configuration saved via *SAV command.</td>
</tr>
</tbody>
</table>

See Also

*RST

*RST

Synopsis

Reset command

Syntax

*RST [all]

Details

Resets the instrument parameters to factory defaults, and the output is shut off. The unit remains in remote mode. To erase saved configurations, function key assignments, and scripts, the optional all parameter must be set to 1.

Note that user calibration parameters are not changes with any form of the *RST comment. They must be reset with the appropriate USRCL:USERCAL:RESET command.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>0</td>
<td>Reset to parameters to factory configuration, excluding saved configurations, function key assignments, and scripts.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Reset to parameters to factory configuration, including saved configurations, function key assignments, and scripts.</td>
</tr>
</tbody>
</table>

See Also

*RCL, LASER:USERCAL:RESET, TEC:USERCAL:RESET

*SAV

Synopsis

Save the instrument configuration

Syntax

*SAV bin

Details

Saves the current instrument configuration into one of four bins which can later be recalled using the *RCL command.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>1 to 4</td>
<td>Save bin</td>
</tr>
</tbody>
</table>

See Also

*RCL

*SRE

Synopsis

Set the Service Request Enable

Syntax

*SRE mask

Details

The *SRE command sets the Service Request Enable Register bits, which control the Master Status Summary bit in the Status Byte Register.
Argument Bit Value Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mask</td>
<td>0 1</td>
<td>TEC Event Summary</td>
</tr>
<tr>
<td></td>
<td>1 2</td>
<td>TEC Condition Summary</td>
</tr>
<tr>
<td></td>
<td>2 4</td>
<td>Laser Event Summary</td>
</tr>
<tr>
<td></td>
<td>3 8</td>
<td>Laser Condition Summary</td>
</tr>
<tr>
<td></td>
<td>4 16</td>
<td>Message Available</td>
</tr>
<tr>
<td></td>
<td>5 32</td>
<td>Event Status Summary</td>
</tr>
<tr>
<td></td>
<td>6 64</td>
<td>Request Service / Master Status Summary</td>
</tr>
<tr>
<td></td>
<td>7 128</td>
<td>Error Message Available</td>
</tr>
</tbody>
</table>

See Also *SRE?*

SRE?

Synopsis Query the Service Request Enable

Syntax *SRE?*

Details Returns the value of the Service Request Enable register. See the *SRE command for a definition of the response value.

See Also *SRE*

STB?

Synopsis Query the Status Byte Register

Syntax *STB?*

Details Returns the value of the Status Byte Register.

<table>
<thead>
<tr>
<th>Response</th>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB</td>
<td>0 1</td>
<td>TEC Event Summary</td>
</tr>
<tr>
<td></td>
<td>1 2</td>
<td>TEC Condition Summary</td>
</tr>
<tr>
<td></td>
<td>2 4</td>
<td>Laser Event Summary</td>
</tr>
<tr>
<td></td>
<td>3 8</td>
<td>Laser Condition Summary</td>
</tr>
<tr>
<td></td>
<td>4 16</td>
<td>Message Available</td>
</tr>
<tr>
<td></td>
<td>5 32</td>
<td>Event Status Summary</td>
</tr>
<tr>
<td></td>
<td>6 64</td>
<td>Request Service / Master Status Summary</td>
</tr>
<tr>
<td></td>
<td>7 128</td>
<td>Error Message Available</td>
</tr>
</tbody>
</table>

See Also *SRE, *PRE*

WAI

Synopsis Wait for Operation Complete command

Syntax *WAI*

Details The *WAI command will pause command processing until the Operation Complete flag is true.

BAUD

Synopsis Sets the baud rate on RS232 interfaces
Syntax

BAUD baudrate

Details

Changes the baud rate on RS232 interfaces. After sending the command, the baud rate will immediately be adjusted to the new speed, so if you are communicating over RS232, you must also change the PC-side baud rate to match.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>baudrate</td>
<td>300</td>
<td>300 baud</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1200 baud</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>2400 baud</td>
</tr>
<tr>
<td></td>
<td>4800</td>
<td>4800 baud</td>
</tr>
<tr>
<td></td>
<td>9600</td>
<td>9600 baud</td>
</tr>
<tr>
<td></td>
<td>19200</td>
<td>19,200 baud</td>
</tr>
<tr>
<td></td>
<td>38400</td>
<td>38,400 baud</td>
</tr>
<tr>
<td></td>
<td>57600</td>
<td>57,600 baud</td>
</tr>
<tr>
<td></td>
<td>115200</td>
<td>115,200 baud</td>
</tr>
</tbody>
</table>

BEEP

Synopsis

Set the beep enable

Syntax

BEEP [enable]

Details

Causes the instrument to beep, or enables or disabled the beep sound for error messages and other events that generate an audible response. If enable is omitted, it is the equivalent of doing a ‘BEEP 2’.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Disable the beep sound</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enable the beep sound</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Generate one beep</td>
</tr>
</tbody>
</table>

See Also

BEEP?

BEEP?

Synopsis

Query the beep enable

Syntax

BEEP?

Details

Returns the value of the Beep register.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Disable the beep sound</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enable the beep sound</td>
</tr>
</tbody>
</table>

See Also

BEEP

BRIGHT

Synopsis

Set the display brightness

Syntax

BRIGHT brightness [, autodim]

Details

Sets the display brightness level, from 0 to 100 percent, and optionally enables or disables automatic display dimming (only on supported units).
Argument	**Value**	**Description**
brightness | 0 to 100 | Brightness level of the display
autodim | 0 or 1 | 0 to disable, 1 to enable

On some displays, such as VFDs, there may only be 4 or 8 brightness levels, and the brightness parameter will be used to select an appropriate level. If autodim is enabled, display will be dimmed to its lowest point after 1 hour of front panel inactivity.

See Also
BRIGHT?

BRIGHT?

Synopsis
Query the display brightness

Syntax
BRIGHT?

Details
Returns the value of the display brightness. See the BRIGHT command for more details.

See Also
BRIGHT

CALdate?

Synopsis
Query the calibration date

Syntax
CALdate?

Details
Returns the date string of the last calibration.

DELAY

Synopsis
Causes a delay in command processing

Syntax
DELAY time

Details
Causes command processing to be delayed for the specified number of milliseconds.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
time | 1 to 30000 | Delay, in milliseconds |

DIO:IN?

Synopsis
Query the state of the auxiliary digital input

Syntax
DIO:IN? port

Details
Returns the state of a specific auxiliary digital input port.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
port | 0 | Interlock |
| | 1 to max | Digital input pin |

The return value will be zero if in the input is low (or interlock is shorted), 1 if the input is high (or the interlock is open). An unconnected digital input may be high or low, depending on the electrical configuration of the port. See the user’s manual for more details.
Only supported on instruments that feature digital input capability.

See Also
TEC:OUT

DIO:OUT?
Synopsis
Query the state of the auxiliary digital output

Syntax
DIO:OUT? port

Details
Returns the state of a specific digital output port.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>0</td>
<td>Relay</td>
</tr>
<tr>
<td></td>
<td>1 to max</td>
<td>Digital output pin</td>
</tr>
</tbody>
</table>

The return value will be zero if in the output is low (or the relay is open), 1 if the output is high (or the relay is closed).

Only supported on instruments that feature digital output capability.

See Also
DIO:IN?, DIO:OUTMODE

DIO:OUTMODE
Synopsis
Set the auxiliary digital output mode

Syntax
DIO:OUTMODE port, function

Details
Selects the function setting for a specific output port. Output ports can be used to signal various instrument states or directly controlled.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>1 to max</td>
<td>Digital output pin</td>
</tr>
<tr>
<td>function</td>
<td>0</td>
<td>Pin output low (off)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Pin output high (on)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pin output high (on) if no channel DIO outputs are high</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Pin output high (on) if any channel DIO outputs are high</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pin output high (on) if all channel DIO outputs are high</td>
</tr>
</tbody>
</table>

Only supported on instruments that feature digital output capability.

See Also
DIO:OUTMODE?

DIO:OUTMODE?
Synopsis
Query the auxiliary digital output mode

Syntax
DIO:OUTMODE? port

Details
Returns the output mode and invert setting for a specific output port. See DIO:OUTMODE for a definition of the port argument and function response values.

Only supported on instruments that feature digital output capability.
EQUIPment?

Synopsis
Query for installed equipment

Syntax
EQUIPment?

Details
The EQUIPment? query returns a comma-separated list of installed modules, which is model number from each module. For modular controllers, the first parameter is the model number of the chassis, followed by the model numbers of each module. For single channel instruments, it returns the model number of the instrument.

ERRORLED

Synopsis
Turn the Error LED On/Off

Syntax
ERRORLED state

Details
If the ERRORLEDMODE is set to 1, this command can be used to turn on or off the Error LED. To turn off the Error LED, the error queue must be empty or the command will be ignored. To ensure the Error LED turns off, issue an “ERR?” before (or with) an “ERRORLED 0” to clear the queue before turning off the LED.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>Turn off the Error LED</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Turn on the Error LED</td>
</tr>
</tbody>
</table>

This setting does not persist across power cycles. In other words, if an “ERRORLED 1” is sent to turn on the Error LED, after the unit is turned off and back on, the Error LED will not relight unless another “ERRORLED 1” command is sent or an actual error occurs.

See Also
ERRORLED?, ERRORLEDMODE

ERRORLED?

Synopsis
Returns the state of the Error LED

Syntax
ERRORLED?

Details
Returns the state of the Error LED, regardless of the ERRORLEDMODE.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>Error LED is off</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Error LED is on</td>
</tr>
</tbody>
</table>

See Also
ERRORLED

ERRORLEDMODE

Synopsis
Sets the Error LED Mode

Syntax
ERRORLEDMODE mode
Details

When the ERRORLEDMODE is set to 1, whenever an error is displayed by the instrument, the Error LED will remain on (persist) until an the error queue is emptied and an "ERRORLED 0" command is sent to the instrument. The ERRORLEDMODE is a persistent setting, meaning it will remain in effect across power-cycles. In addition, when the ERRORLEDMODE is set to 1, the ERRORLED command can be used to manually turn on the Error LED.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>0</td>
<td>Disables persistent Error LED</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables persistent Error LED</td>
</tr>
</tbody>
</table>

When in remote mode, REMERR must be set to 1 for this function to work, as REMERR 0 suppresses error display in remote mode.

See Also

ERRORLED, ERRORLEDMODE?, REMERR

ERRORLEDMODE?

Synopsis

Returns the state of the Error LED Mode

Syntax

ERRORLED?

Details

Returns the state of the Error LED Mode.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>0</td>
<td>Persistent Error LED Mode disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Persistent Error LED Mode enabled</td>
</tr>
</tbody>
</table>

See Also

ERRORLEDMODE

ERRors?

Synopsis

Query for errors

Syntax

ERRors?

Details

Returns a comma–delimited list of error codes. If no error has occurred, a 0 is returned.

A typical response might look like:

201,124

See Also

ERRSTR?

ERRSTR?

Synopsis

Query for errors with string descriptions

Syntax

ERRSTR?

Details

Similar to the ERR? query, but a string description is included with the error code. A typical response might look like:

201,"Out of range",124,"Data mismatch"
HEXFLOAT

Synopsis
Enables the hex float mode

Syntax
HEXFLOAT *enable*

Details
Enables transmission of hex floats from the instrument. See the section *Working with Radixes and Hex Floats* for more information on this mode.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Hex float mode disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Hex float mode enabled</td>
</tr>
</tbody>
</table>

See Also
HEXFLOAT?

Support
This function is only available in firmware version 2.0 and later.

HEXFLOAT?

Synopsis
Query the state of the hex float mode

Syntax
HEXFLOAT?

Details
Returns the enable state of hex mode. See the HEXFLOAT command for more details.

Only supported on 6300 Series and 4200-DR Series controllers.

See Also
HEXFLOAT

Support
This function is only available in firmware version 2.0 and later.

LASer:AUX?

Synopsis
Query the auxiliary voltage inputs

Syntax
LASer:AUX? *index*

Details
Returns the voltage (in volts) measured by the auxiliary voltage inputs. Only certain instruments (such as the LaserPak) support these inputs, see your instrument manual for details. For instruments that feature multiple auxiliary inputs, the *index* argument specifies which input to return.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>0</td>
<td>Returns the first auxiliary input voltage</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Returns the second auxiliary input voltage</td>
</tr>
</tbody>
</table>

If the auxiliary input is configured to be used as a temperature input, use the LAS:R? and LAS:T? queries to return the resistance or temperature measurement, respectively.

See Also
LASer:R?, LASer:T?

Support
Only supported on controllers with auxiliary inputs, such as the 485 LaserPak. See your controller manual for more information.
LASer:CABLER

Synopsis
Set cable resistance compensation

Syntax
LASer:CABLER resistance

Details
Set the cable resistance to adjust the voltage measurement to display the voltage at the laser, compensating for the voltage losses in the cable and connectors. See your instrument manual for additional information on using this feature.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resistance</td>
<td>0.0000 to 10.0000</td>
<td>Cable resistance, in ohms</td>
</tr>
</tbody>
</table>

See Also
LASer:CABLER?

LASer:CABLER?

Synopsis
Query the cable resistance compensation

Syntax
LASer:CABLER?

Details
Returns the value of the cable resistance compensation value. See the LASer:CABLER command for more details.

See Also
LASer:CABLER

LASer:CALMD (CALPD)

Synopsis
Set photodiode optical response

Syntax
LASer:CALMD PDresp

Details
Set the photodiode optical response value for converting photodiode current into optical power. This is the PD Response value from the instrument menu.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDresp</td>
<td>0.0000 to 1000</td>
<td>Sensitivity in μA/mW</td>
</tr>
</tbody>
</table>

If PDresp is zero, then power mode will be unavailable, and the instrument will display photodiode current. If PDresp is non-zero, then power mode will be allowed, and the instrument will display optical power.

See Also
LASer:CALMD

LASer:CALMD? (CALPD?)

Synopsis
Query the photodiode optical response

Syntax
LASer:CALMD? (CALPD?)

Details
Returns the value of the photodiode optical response. See the LASer:CALMD command for more details.

See Also
LASer:CALMD
LASer:CAL:CANCEL
Synopsis
Cancel calibration in progress

Syntax
`LASer:CAL:CANCEL`

Details
Cancels any calibration in progress.

LASer:CAL:LDX, LDX?, LVX, LVX?, MDX, MDX?
Synopsis
Laser calibration functions

Details
See the calibration section for details on how to use these commands.

LASer:CHAN
Synopsis
Set the laser channel

Syntax
`LASer:CHAN channel`

Details
For controllers with more than one laser channel, the LASer:CHAN command selects the active channel.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel</td>
<td>Laser channel, from 1 to n</td>
</tr>
</tbody>
</table>

See Also
LASer:CHAN?, TEC:CHAN

LASer:CHAN?
Synopsis
Returns the active laser channel

Syntax
`LASer:CHAN?`

Details
Returns the active laser channel in a multi-channel laser controller.

See Also
LASer:CHAN

LASer:COND?
Synopsis
Query laser condition

Syntax
`LASer:COND?`

Details
Returns the laser condition register.
Response Bit Value Description

<table>
<thead>
<tr>
<th>conditions</th>
<th>0</th>
<th>1</th>
<th>Current limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>Voltage limit</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>Photodiode current limit</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>Photodiode power limit</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>Interlock disabled</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>32</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>128</td>
<td>Laser open circuit</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>256</td>
<td>Laser shorted</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>512</td>
<td>Out of tolerance</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1024</td>
<td>Output on</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2048</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4096</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8192</td>
<td>R limit</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16384</td>
<td>T limit</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>32768</td>
<td>Unused</td>
</tr>
</tbody>
</table>

See Also
LASer:ENABLE:COND, *STB?

LASer:CONST

Synopsis
Set the Sheinhart-Hart temperature conversion constants

Syntax
LASer:CONST A, B, C

Details
Sets the constants used in converting the resistance of auxiliary temperature inputs to °C using the Steinhart-Hart formula. By default, the thermistor constants are set to those for a BetaTHERM 10K3A1 thermistor.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>± 9.9999</td>
<td>First Steinhart-Hart constant (x 10⁻³)</td>
</tr>
<tr>
<td>B</td>
<td>± 9.9999</td>
<td>Second Steinhart-Hart constant (x 10⁻⁴)</td>
</tr>
<tr>
<td>C</td>
<td>± 9.9999</td>
<td>Third Steinhart-Hart constant (x 10⁻⁷)</td>
</tr>
</tbody>
</table>

Some vendors may refer to A, B, and C as C1, C2, & C3.

See your user’s manual for more information on using this function.

See Also
LASer:CONST?

LASer:CONST?

Synopsis
Query the Sheinhart-Hart temperature conversion constants

Syntax
LASer:CONST?

Details
Returns the sensor temperature conversion constants. See the LASer:CONST command for a complete definition of the A, B, and C response values.

See Also
LASer:CONST

LASer:DC

Synopsis
Set the duty cycle in QCW mode
Syntax

```
LASer:DC dutyCycle
```

Details

This changes the duty cycle percentage when in QCW mode. A new frequency value will be computed based on the duty cycle and pulse width (the pulse width is not changed). If the resulting frequency is outside the allowable range, an E-201 error will be generated and the command ignored.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dutyCycle</td>
<td>Duty cycle, in percent</td>
</tr>
</tbody>
</table>

See Also

LASer:DC?, LASer:F, LASer:PWF, LASer:PWP

Support

Only supported on QCW-equipped controllers.

LASer:DC?

Synopsis

Query the QCW duty cycle

Syntax

```
LASer:DC?
```

Details

Returns the value of the duty cycle. See LASer:DC for a definition of the `dutyCycle` response value.

See Also

LASer:DC

Support

Only supported on QCW-equipped controllers.

LASer:DEC

Synopsis

Decrement the laser set point

Syntax

```
LASer:DEC steps [, time]
```

Details

The LASer:DEC command uses the step size defined with the LASer:STEP command to decrement the laser set point. If the `time` parameter is omitted, then the set point is immediately decremented `steps` times the step size. If the `time` parameter is included, then the instrument will still decrement `steps` times the step size, but will pause at each step for `time` milliseconds.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>steps</td>
<td>1 to 65000</td>
<td>Number of steps to decrement</td>
</tr>
<tr>
<td>time</td>
<td>0 to 65000</td>
<td>Number of milliseconds to pause between each step</td>
</tr>
</tbody>
</table>

See Also

LASer:INC, LASer:STEP

LASer:DELAYIN

Synopsis

Set the pulse delay, in seconds, between the trigger input and output pulse

Syntax

```
LASer:DELAYIN delay
```

Details

Sets the delay from the rising edge of TRIGIN to the generation of the output pulse in QCW mode.
Argument	Value	Description
delay | 0.000015 to 1 | Delay, in seconds

See Also
LASeR:DELAYIN?, LASeR:DELAYOUT

LASeR:DELAYIN?

Synopsis
Query the trigger input pulse delay

Syntax
LASeR:DELAYIN?

Details
Returns the value of the trigger input delay. See LASeR:DELAYIN for a definition of the *delay* response value.

See Also
LASeR:DELAYIN

Support
Only supported on QCW-equipped controllers.

LASeR:DELAYOUT

Synopsis
Set the trigger output delay, in seconds, between the output pulse and the trigger output

Syntax
LASeR:DELAYOUT *delay*

Details
Sets the delay from the rising edge of the pulse to the rising edge of TRIGOUT in QCW mode.

**Argument	Value	Description
delay | 0.000000 to 1 | Delay, in seconds

See Also
LASeR:DELAYOUT?, LASeR:DELAYIN

Support
Only supported on QCW-equipped controllers.

LASeR:DELAYOUT?

Synopsis
Query the trigger output delay

Syntax
LASeR:DELAYOUT?

Details
Returns the value of the trigger output delay. See LASeR:DELAYOUT for a definition of the *delay* response value.

See Also
LASeR:DELAYOUT

Support
Only supported on QCW-equipped controllers.

LASeR:DISplay

Synopsis
Set laser display enable

Syntax
LASeR:DISplay *enable*

Details
The LASeR:DISplay command can be used to completely lock out local operation of the instrument and display “Display Disabled” instead of the normal display.
<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Disables the display and front panel</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables the display and front panel</td>
</tr>
</tbody>
</table>

Once the display is disabled, the front panel is completely locked out. The only way to restore functionality to the front panel is to issue a “LASer:DISplay 1” or cycle power on the unit.

See Also
LASer:DISplay?

LASer:DISplay?

Synopsis
Query the display enable state

Syntax
LASer:DISplay?

Details
Returns the value of the laser display enable state. See LASer:DISplay for a definition of the `enable` response value.

See Also
LASer:DISplay

LASer:ENABLE:COND

Synopsis
Set Laser Condition Enable register

Syntax
LASer:ENABLE:COND `conditions`

Details
Enables reporting of selected conditions to the Status Byte Register. See the LASer:COND command for a definition of the `conditions` parameter.

See Also
LASer:ENABLE:COND?, LASer:COND?

LASer:ENABLE:COND?

Synopsis
Query Laser Condition Enable register

Syntax
LASer:ENABLE:COND?

Details
Returns the value of the Laser Condition Enable register. See the LASer:COND command for a definition of the `conditions` response.

See Also
LASer:ENABLE:COND, LASer:COND?

LASer:ENABLE:EVEnt

Synopsis
Set Laser Event Enable register

Syntax
LASer:ENABLE:EVEnt `events`

Details
Enables reporting of selected events to the Status Byte Register. See the LASer:EVEnt command for a definition of the `events` parameter.

See Also
LASer:ENABLE:EVEnt?, LASer:EVEnt?

LASer:ENABLE:EVEnt?

Synopsis
Query Laser Event Enable register
Syntax LASer:ENABLE:EVENT?

Details Returns the value of the Laser Event Enable register. See the LASer:EVENT command for a definition of the events response.

See Also LASer:ENABLE:EVENT, LASer:EVENT?

LASer:ENABLE:OUTOFF

Synopsis Set the Output Off Enable register

Syntax LASer:ENABLE:OUTOFF outoff

Details The Output Off register controls what conditions will cause the laser output to be turned off. Some conditions are always enabled, as indicated below. The factory default conditions are shown in bold.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outoff</td>
<td>0</td>
<td>1</td>
<td>Current limit</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>Voltage limit (always enabled)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>Photodiode current limit</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>Photodiode power limit</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>Interlock disabled (always enabled)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>32</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>128</td>
<td>Laser open circuit (always enabled)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>256</td>
<td>Laser shorted (always enabled)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>512</td>
<td>Out of tolerance</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1024</td>
<td>TEC off</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2048</td>
<td>TEC temperature limit</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4096</td>
<td>Hardware error (always enabled)</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8192</td>
<td>R limit</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16384</td>
<td>T limit</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>32768</td>
<td>Thermal limit exceeded (always enabled)</td>
</tr>
</tbody>
</table>

The default value for this register is 40350.

See Also LASer:ENABLE:OUTOFF?

LASer:ENABLE:OUTOFF?

Synopsis Query the Output Off Enable register

Syntax LASer:ENABLE:OUTOFF?

Details Returns the value of the Output Off register. See the LASer:ENABLE:OUTOFF command for definition of outoff response value.

See Also LASer:ENABLE:OUTOFF

LASer:EVENT?

Synopsis Query the value of the laser event register

Syntax LASer:EVENT?
Details

Returns the laser event register.

<table>
<thead>
<tr>
<th>Response</th>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>0</td>
<td>1</td>
<td>Current limit</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>Voltage limit</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>Photodiode current limit</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>Photodiode power limit</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>Interlock state changed</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>32</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>128</td>
<td>Laser open circuit</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>256</td>
<td>Laser short circuit</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>512</td>
<td>Out of tolerance changed</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1024</td>
<td>Output changed state</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2048</td>
<td>New data</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4096</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8192</td>
<td>R limit</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16384</td>
<td>T limit</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>32768</td>
<td>Unused</td>
</tr>
</tbody>
</table>

After reading the event register, the event register is set to zero.

See Also

LASer:ENABle:EVEnt

LASer:F

Synopsis

Set the frequency of pulses in QCW mode

Syntax

LASer:F frequency

Details

Changes the frequency when in QCW mode. A new duty cycle value will be computed based on the frequency and pulse width (the pulse width is not changed). If the resulting duty cycle is outside the allowable range, an E-201 error will be generated and the command ignored.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>Frequency, in hertz</td>
</tr>
</tbody>
</table>

See Also

LASer:F?

Support

Only supported on QCW-equipped controllers.

LASer:F?

Synopsis

Query the pulse frequency

Syntax

LASer:F?

Details

Returns the value of the frequency. See LASer:F for a definition of the frequency response value.

See Also

LASer:F

Support

Only supported on QCW-equipped controllers.
LASer:FIXTURELED

Synopsis
Turns the fixture LED off, on, or flash

Syntax
LASer:FIXTURELED *mode*

Details
Controls the on/off/flashing state of the fixture LED when the laser output is off (the LED is always lit solid when the output is on).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>0</td>
<td>LED off</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LED on</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>LED flashing (approximately 1 Hz)</td>
</tr>
</tbody>
</table>

See Also
LASer:FIXTURELED?

Support
Only supported on laser controllers with Fixture LED functionality.

LASer: FIXTURELED?

Synopsis
Query the fixture LED mode

Syntax
LASer:FIXTURELED?

Details
Returns the value of the fixture LED mode. See LASer:FIXTURELED for a definition of the *mode* response value.

See Also
LASer:FIXTURELED

Support
Only supported on laser controllers with Fixture LED functionality.

LASer:INC

Synopsis
Increment the laser set point

Syntax
LASer:INC *steps [, time]*

Details
The LASer:INC command uses the step size defined with the LASer:STEP command to increment the laser set point. If the *time* parameter is omitted, then the set point is immediately incremented *steps* times the step size. If the *time* parameter is included, then the instrument will still increment *steps* times the step size, but will pause at each step for *time* milliseconds.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>steps</td>
<td>1 to 65000</td>
<td>Number of steps to increment</td>
</tr>
<tr>
<td>time</td>
<td>0 to 65000</td>
<td>Number of milliseconds to pause between each step</td>
</tr>
</tbody>
</table>

See Also
LASer:DEC, LASer:STEP

LASer:INTCONT

Synopsis
Enables or disables the intermittent contact detection

Syntax
LASer:INTCONT *enable*
Details

The LASer:INTCONT turns the intermittent contact detection of the laser driver on or off. See the user’s manual for more details.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Turn intermittent contact detection off</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Turn intermittent contact detection on</td>
</tr>
</tbody>
</table>

See Also

LASer:INTCONT?

Support

Not all controllers support intermittent contact protection. See your controller’s user manual for more details.

LASer:INTCONT?

Synopsis

Query the state of the intermittent contact setting

Syntax

LASer:INTCONT?

Details

Returns the intermittent contact setting.

Response Description

| enable | The state of the intermittent contact setting |

See Also

LASer:INTCONT

LASer:LDI (I)

Synopsis

Set the laser current set point

Syntax

LASer:LDI setpoint

Details

The LASer:LDI sets the laser current set point. An error will be generated if the value of setpoint is greater than the current limit.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setpoint</td>
<td>0 to Ilim</td>
<td>Set the current set point in milliamps</td>
</tr>
</tbody>
</table>

See Also

LASer:LDI?, LASer:LI:Mit:LDI, LASer:SET:LDI

LASer:LDI? (I?)

Synopsis

Query the actual laser current

Syntax

LASer:LDI?

Details

Returns the actual (measured) laser current.

Response Description

| current | The actual (measured) current in milliamps |

See Also

LASer:LDI
LASer:LDIRES

Synopsis
Set the laser current resolution

Syntax
LASer:LDIRES *resolution*

Details
The LASer:LDIRES sets the laser current resolution for both the set point and measurement. An error will be generated if the value of *resolution* is not supported. See the LASer:LDIRESAVAIL? query to get a list of supported values.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution</td>
<td>Model-specific</td>
<td>Sets the resolution in milliamps</td>
</tr>
</tbody>
</table>

This function is only available in firmware version 2.0 and later.

See Also
LASer:LDIRES?, LASer:LDIRESAVAIL?

Support
This function is only available in firmware version 2.0 and later.

LASer:LDIRES?

Synopsis
Query the laser current resolution value

Syntax
LASer:LDIRES?

Details
Returns the laser current resolution value.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution</td>
<td>The resolution value, in milliamps</td>
</tr>
</tbody>
</table>

See Also
LASer:LDIRES, LASer:LDIRESAVAIL?

Support
This function is only available in firmware version 2.0 and later.

LASer:LDIRESAVAIL?

Synopsis
Query the list of available laser current resolution values

Syntax
LASer:LDIRESAVAIL?

Details
Returns a list of available current resolutions, which can be used with the LASer:LDIRES command to change the laser current set point and measurement resolution.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution</td>
<td>A comma separated list of available resolutions, in milliamps</td>
</tr>
</tbody>
</table>

See Also
LASer:LDIRES, LASer:LDIRES?

Support
This function is only available in firmware version 2.0 and later.

LASer:LDV

Synopsis
Set the laser voltage set point

Syntax
LASer:LDV *setpoint*
The LASer:LDV sets the laser voltage set point.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setpoint</td>
<td>0 to Vlimit</td>
<td>Set the voltage set point in volts</td>
</tr>
</tbody>
</table>

See Also
LASer:LIMit:LDV?, LASer:LDV?, LASer:SET:LDV?

LASer:LDV?

Synopsis
Query the laser actual voltage

Syntax
LASer:LDV?

Details
Returns the actual laser voltage.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
<td>Actual laser voltage, in volts</td>
</tr>
</tbody>
</table>

See Also
LASer:LIMit:LDV, LASer:LDV

LASer:LIMit:LDI (I)

Synopsis
Set the laser current limit

Syntax
LASer:LIMit:LDI limit

Details
The LASer:LDI sets the laser current limit. If the laser current set point is greater than the value of limit, then laser current set point will be reduced to the value of limit.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>0 to Imax</td>
<td>Set the laser current limit in milliamps</td>
</tr>
</tbody>
</table>

See Also
LASer:LDI, LASer:LIMit:LDI?

LASer:LIMit:LDI? (I?)

Synopsis
Query the laser current limit

Syntax
LASer:LIMit:LDI?

Details
Returns the value of the laser current limit. See LASer:LIMit:LDI for a definition of the limit response value.

See Also
LASer:LIMit:LDI

LASer:LIMit:LDV

Synopsis
Set the laser voltage limit

Syntax
LASer:LIMit:LDV limit

Details
The LASer:LIMit:LDV sets the laser voltage limit. If the laser voltage set point is greater than the value of limit, then laser voltage set point will be reduced to the value of limit.
LASer:LIMit:LDV?

Synopsis
Query the laser voltage limit

Syntax
```plaintext
LASer:LIMit:LDV?
```

Details
Returns the value of the laser voltage limit. See LASer:LIMit:LDV for a definition of the `limit` response value.

See Also
LASer:LIMit:LDV, LASer:LDV

LASer:LIMit:MDI (IPD)

Synopsis
Set the photodiode current limit

Syntax
```plaintext
LASer:LIMit:MDI limit
```

Details
The LASer:LIMit:MDI sets the photodiode current limit. If the photodiode current set point is greater than the value of `limit`, then photodiode current set point will be reduced to the value of `limit`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>limit</code></td>
<td>0 to <code>Imax</code></td>
<td>Set the photodiode current limit in microamps</td>
</tr>
</tbody>
</table>

See Also
LASer:LIMit:MDI?, LASer:MDI

LASer:LIMit:MDI? (IPD?)

Synopsis
Query the photodiode current limit

Syntax
```plaintext
LASer:LIMit:MDI?
```

Details
Returns the value of the photodiode current limit. See LASer:LIMit:MDI for a definition of the `limit` response value.

See Also
LASer:LIMit:MDI, LASer:MDI

LASer:LIMit:MDP (Ppd)

Synopsis
Set the photodiode power limit

Syntax
```plaintext
LASer:LIMit:MDP limit
```

Details
The LASer:LIMit:MDP sets the photodiode power limit. If the photodiode power set point is greater than the value of `limit`, then photodiode power set point will be reduced to the value of `limit`.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>limit</code></td>
<td>0 to <code>Pmax</code></td>
<td>Set the photodiode power limit in milliwatts</td>
</tr>
</tbody>
</table>

See Also
LASer:LIMit:MDP?, LASer:MDP
LASer:LIMit:MDP? (Ppd?)

Synopsis
Query the photodiode power limit

Syntax
LASer:LIMit:MDP?

Details
Returns the value of the photodiode power limit. See LASer:LIMit:MDP for a definition of the \textit{limit} response value.

See Also
LASer:LIMit:MDP, LASer:MDP

LASer:LIMit:RHigh

Synopsis
Set the high resistance limit

Syntax
LASer:LIMit:RHigh \textit{limit}

Details
The LASer:LIMit:RHI sets the upper resistance limit for auxiliary temperature sensor measurements. If the measured resistance from the temperature sensor exceeds the high limit, and the corresponding bit is enabled in the OUTOFF register, the laser output will be turned off.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{limit}</td>
<td>0 to 50000</td>
<td>Set the high resistance limit, in ohms</td>
</tr>
</tbody>
</table>

See Also
LASer:ENABLE:OUTOFF, LASer:LIMit:RHighb, LASer:RLOw

Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:LIMit:RHighb?

Synopsis
Query the high resistance limit

Syntax
LASer:LIMit:RHighb?

Details
Returns the value of the high resistance limit. See LASer:LIMit:RHighb for a definition of the \textit{limit} response value.

See Also
LASer:LIMit:RHighb

Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:LIMit:RLOw

Synopsis
Set the low resistance limit

Syntax
LASer:LIMit:RLOw \textit{limit}

Details
The LASer:LIMit:RLO sets the lower resistance limit for auxiliary temperature sensor measurements. If the measured resistance from the temperature sensor exceeds the low
limit, and the corresponding bit is enabled in the OUTOFF register, the laser output will be turned off.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>0 to 50000</td>
<td>Set the low resistance limit, in ohms</td>
</tr>
</tbody>
</table>

See Also
LASer:ENABle:OUTOFF, LASer:LIMIT:RLOw?, LASer:RLOw

Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:LIMIT:RLOw?

Synopsis
Query the low resistance limit

Syntax
LASer:LIMIT:RLOw?

Details
Returns the value of the low resistance limit. See LASer:LIMIT:RLOw for a definition of the limit response value.

See Also
LASer:LIMIT:RLOw

Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:LIMIT:THIgh

Synopsis
Set the high temperature limit

Syntax
LASer:LIMIT:THIgh limit

Details
The LASer:LIMIT:THI sets the upper temperature limit for auxiliary temperature sensor measurements. If the measured temperature from the temperature sensor exceeds the high limit, and the corresponding bit is enabled in the OUTOFF register, the laser output will be turned off.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>-99 to +250</td>
<td>Set the high temperature limit, in °C</td>
</tr>
</tbody>
</table>

See Also
LASer:ENABle:OUTOFF, LASer:LIMIT:THIgh?, LASer:TLOw

Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:LIMIT:THIgh?

Synopsis
Query the high temperature limit

Syntax
LASer:LIMIT:THIgh?

Details
Returns the value of the high temperature limit. See LASer:LIMIT:THIgh for a definition of the limit response value.

See Also
LASer:LIMIT:THIgh
Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:LIMit:TLOw
Synopsis
Set the low temperature limit

Syntax
LASer:LIMit:TLOw \(limit \)

Details
The LASer:LIMit:TLO sets the lower temperature limit for auxiliary temperature sensor measurements. If the measured temperature from the temperature sensor exceeds the low limit, and the corresponding bit is enabled in the OUTOFF register, the laser output will be turned off.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(limit)</td>
<td>-99 to +250</td>
<td>Set the low temperature limit, in °C</td>
</tr>
</tbody>
</table>

See Also
LASer:ENABle:OUTOFF, LASer:LIMit:TLOw?, LASer:TLOw

Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:LIMit:TLOw?
Synopsis
Query the low temperature limit

Syntax
LASer:LIMit:TLOw?

Details
Returns the value of the low temperature limit. See LASer:LIMit:TLOw for a definition of the \(limit \) response value.

See Also
LASer:LIMit:TLOw

Support
This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:MDI (IPD)
Synopsis
Set the photodiode current set point

Syntax
LASer:MDI \(setpoint \)

Details
The LASer:MDI sets the photodiode current set point.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(setpoint)</td>
<td>0 to (I_{\text{limit}})</td>
<td>Set the photodiode current set point in microamps</td>
</tr>
</tbody>
</table>

See Also
LASer:LIMit:MDI?, LASer:MDI?, LASer:SET:MDI?

LASer:MDI? (IPD?)
Synopsis
Query the actual photodiode current

Syntax
LASer:MDI?

Details
Returns the actual photodiode current.
Response	Description
PDcurrent | Actual photodiode current, in microamps

See Also
LASer:LIM:MD, LASer:MD

LASer:MDP (Ppd)

Synopsis
Set the photodiode power set point

Syntax
LASer:MDP setpoint

Details
The LASer:MDP sets the photodiode power set point.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setpoint</td>
<td>0 to (P_{\text{limit}})</td>
<td>Set the photodiode power set point in milliwatts</td>
</tr>
</tbody>
</table>

See Also
LASer:LIM:MDP?, LASer:MDP?, LASer:SET:MDP?

LASer:MDP? (Ppd?)

Synopsis
Query the actual photodiode power

Syntax
LASer:MDP?

Details
Returns the actual photodiode power.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDpower</td>
<td>Actual photodiode power, in milliwatts</td>
</tr>
</tbody>
</table>

See Also
LASer:LIM:MDP, LASer:MD

LASer:MODE?

Synopsis
Query operational mode

Syntax
LASer:MODE?

Details
Returns the control mode of the laser driver.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>ILBW</td>
<td>Laser current control (Io/ACC) mode, low bandwidth</td>
</tr>
<tr>
<td></td>
<td>IHBW</td>
<td>Laser current control (Io HiBW) mode, high bandwidth</td>
</tr>
<tr>
<td></td>
<td>PULSE</td>
<td>Laser current control (Io Pulse) mode, QCW internal trigger</td>
</tr>
<tr>
<td></td>
<td>TRIG</td>
<td>Laser current control (Io Ext Trig) mode, QCW external trigger</td>
</tr>
<tr>
<td></td>
<td>BURST</td>
<td>Laser current control (Io Burst) mode, QCW burst</td>
</tr>
<tr>
<td></td>
<td>MDI</td>
<td>Photodiode current control (Im/AMC) mode</td>
</tr>
<tr>
<td></td>
<td>MDP</td>
<td>Photodiode power control (Po/APC) mode</td>
</tr>
<tr>
<td></td>
<td>LDV</td>
<td>Laser voltage control (Vf/AVC) mode</td>
</tr>
</tbody>
</table>

See Also

LASer:MODE:BURST

Synopsis
Set operational mode to laser current control, QCW burst.
Syntax: LASer:MODE:BURST

Details: Switches the Laser driver to laser current control mode, QCW burst. Pulses are triggered with a LASer:TRIGGER command or via the external trigger. The number of pulses is controlled by the LASer:QCWCOUNT command. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.

See Also: LASer:MODE?, LASer:QCWCOUNT, LASer:TRIGGER

Support: Only supported on QCW-equipped controllers.

LASer:MODE:ICW (CW)

Synopsis: Set operational mode to laser current control, continuous wave

Syntax: LASer:MODE:ICW

Details: This command is identical to LASer:MODE:ILBW, and is included for compatibility reasons. If a LASer:MODE? query is done after this command is issued, “ILBW” will be returned.

See Also: LASer:MODE:ILBW

LASer:MODE:ILBW (I)

Synopsis: Set operational mode to laser current control, low bandwidth

Syntax: LASer:MODE:ILBW

Details: Switches the Laser driver to laser current control mode, low bandwidth. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.

See Also: LASer:MODE?

LASer:MODE:IHBW

Synopsis: Set operational mode to laser current control, high bandwidth

Syntax: LASer:MODE:IHBW

Details: Switches the Laser driver to laser current control mode, high bandwidth. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.

See Also: LASer:MODE?

LASer:MODE:LDV

Synopsis: Set operational mode to laser voltage control

Syntax: LASer:MODE:LDV

Details: Switches the Laser driver to laser voltage control mode. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.
LASer:MODE:MDI (IPD)

Synopsis
Set operational mode to photodiode current control

Syntax
LASer:MODE:MDI

Details
Switches the Laser driver to photodiode current control mode. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.

See Also
LASer:MODE?

LASer:MODE:MDP (Ppd)

Synopsis
Set operational mode to photodiode power control

Syntax
LASer:MODE:MDP

Details
Switches the Laser driver to photodiode power control mode. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.

See Also
LASer:MODE?

LASer:MODE:PULSE

Synopsis
Set operational mode to laser current control, QCW mode, internal trigger

Syntax
LASer:MODE:PULSE

Details
Switches the Laser driver to laser current control mode, QCW. Pulses are internally generated using the pulse width, duty cycle, and frequency settings. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.

See Also
LASer:MODE?

Support
Only supported on QCW-equipped controllers.

LASer:MODE:TRIG

Synopsis
Set operational mode to laser current control, QCW mode, external trigger

Syntax
LASer:MODE:TRIG

Details
Switches the Laser driver to laser current control mode, QCW. Pulses are externally triggered with the TRIGIN signal. Each rising edge of TRIG in generates one pulse. Pulse width is determined by the pulse width setting. Duty cycle and frequency are ignored. If the mode is being changed and the laser output is on, the laser output will be turned off and an error generated.

See Also
LASer:MODE?
Support Only supported on QCW-equipped controllers.

LASer:OUTput

Synopsis Set the laser output state

Syntax `LASer:OUTput state`

Details Turns the laser output on or off.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>Turn the output off</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Turn the output on</td>
</tr>
</tbody>
</table>

See Also `LASer:OUTput?`

LASer:OUTput?

Synopsis Query the laser output state

Syntax `LASer:OUTput?`

Details Returns the value of the laser current limit. See LASer:OUT for a definition of the state response value.

See Also `LASer:OUTput`

LASer:PDBias

Synopsis Set the photodiode bias voltage set point

Syntax `LASer:PDBias voltage`

Details Sets the photodiode bias voltage set point.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
<td>0 to 5</td>
<td>Negative voltage bias set point, in volts</td>
</tr>
</tbody>
</table>

See Also `LASer:PDBias?`

LASer:PDBias?

Synopsis Query the photodiode bias voltage set point

Syntax `LASer:PDBias?`

Details Returns the value of the photodiode bias voltage set point. See LASer:PDBias for a definition of the voltage response value.

See Also `LASer:PDBias`

LASer:PW?

Synopsis Query the pulse width

Syntax `LASer:PW?`
Details

Returns the pulse width, in milliseconds. See LASer:PWF and LASer:PWP for more information on setting the pulse width.

See Also

LASer:PWF, LASer:PWP

Support

Only supported on QCW-equipped controllers.

LASer:PWF

Synopsis

Set the pulse width while holding the frequency constant

Syntax

LASer:PWF pulsewidth

Details

Changes the pulse width when in QCW mode. A new duty cycle value will be computed based on the frequency and pulse width. If the resulting duty cycle is outside the allowable range, an E-201 error will be generated and the command ignored.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pulsewidth</td>
<td>Pulse width, in milliseconds</td>
</tr>
</tbody>
</table>

See Also

LASer:PW?, LASer:PWP, LASer:QCWHOLD

Support

Only supported on QCW-equipped controllers.

LASer:PWP

Synopsis

Set the pulse width while holding the duty cycle constant

Syntax

LASer:PWP pulsewidth

Details

Changes the pulse width when in QCW mode. A new frequency value will be computed based on the duty cycle and pulse width. If the resulting frequency is outside the allowable range, an E-201 error will be generated and the command ignored.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pulsewidth</td>
<td>Pulse width, in milliseconds</td>
</tr>
</tbody>
</table>

See Also

LASer:PW?, LASer:PWF, LASer:QCWHOLD

Support

Only supported on QCW-equipped controllers.

LASer:QCWHOLD

Synopsis

Set the QCW (pulse) hold setting for pulse width adjustments in the user interface

Syntax

LASer:QCWHOLD hold

Details

Sets which value to hold constant (frequency or duty cycle) when making pulse width adjustments in the user interface.

This command has no effect on the LASer:PWF and LASer:PWP commands, as they explicitly define which will be held constant. It only affects the pulse width adjustments done through the front panel.
Lasers: QCWHOLD

Synopsis
Queries the QCW (pulse) hold setting for pulse width adjustments in the user interface.

Syntax
```
LASer:QCWHOLD?
```

Details
Returns the value of the hold constant. See LASer:QCWHOLD for a definition of the `hold` response value.

Support
Only supported on QCW-equipped controllers.

LASer: QCWCOUNT

Synopsis
Set the QCW burst count

Syntax
```
LASer:QCWCOUNT count
```

Details
Sets how many pulses will be generated for each burst when operating in IO (Burst) mode.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>1 – 60,000</td>
<td>Number of pulses per burst</td>
</tr>
</tbody>
</table>

Support
Only supported on QCW-equipped controllers.

LASer: QCWCOUNT?

Synopsis
Queries the number of pulses generated for each burst when operating in IO (Burst) mode.

Syntax
```
LASer:QCWCOUNT?
```

Details
Returns the pulse count. See LASer:QCWCOUNT for a definition of the `count` response value.

Support
Only supported on QCW-equipped controllers.
Details: Returns the resistance measurement, in ohms, from the auxiliary temperature sensor input.

See Also: LASer:T?

Support: This function is only supported for controllers with auxiliary temperature inputs. See your controller’s manual for more information.

LASer:RAMP

Synopsis: Sets the ramp rate for output on and set point changes

Syntax: LASer:RAMP time

Details: For instruments that support control of the output ramp rate, this command allows the user to modify the rate to speed up or slow down set point transitions.

The instrument will ramp up or down the set point over the duration specified by the time parameter.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>0 to 1000</td>
<td>Ramp rate, in milliseconds.</td>
</tr>
</tbody>
</table>

See Also: LASer:RAMP?

Support: Requires v2.13 or v3.12 or later firmware.

LASer: RAMP?

Synopsis: Queries the laser ramp rate

Syntax: LASer:RAMP?

Details: Returns the ramp rate. See LASer:RAMP for a definition of the time response value.

See Also: LASer:RAMP

Support: Requires v2.13 or v3.12 or later firmware.

LASer:RANGE

Synopsis: Set the output current range

Syntax: LASer:RANGE range

Details: For instruments that support dual range operation, this command sets the low or high range.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>0</td>
<td>Low range</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>High range</td>
</tr>
</tbody>
</table>

See Also: LASer:RANGE?

Support: Not supported on single range instruments.
LASer: RANGE?
Synopsis: Queries the laser current range.
Syntax: LASer:RANGE?
Details: Returns the current range. See LASer:RANGE for a definition of the range response value.
See Also: LASer:RANGE
Support: Not supported on single range instruments.

LASer:SET:LDI? (I?)
Synopsis: Query the laser current set point
Syntax: LASer:SET:LDI?
Details: Returns the value of the laser current set point. See LASer:LDI for a definition of the setpoint response value.
See Also: LASer:LDI

LASer:SET:LDV?
Synopsis: Query the laser voltage set point
Syntax: LASer:SET:LDV?
Details: Returns the value of the laser voltage set point. See LASer:LDV for a definition of the setpoint response value.
See Also: LASer:LDV

LASer:SET:MDI? (IPD?)
Synopsis: Query the photodiode current set point
Syntax: LASer:SET:MDI? (IPD?)
Details: Returns the value of the photodiode current set point. See LASer:MDI for a definition of the setpoint response value.
See Also: LASer:MDI

LASer:SET:MDP? (Ppd?)
Synopsis: Query the photodiode power set point
Syntax: LASer:SET:MDP? (Ppd?)
Details: Returns the value of the photodiode power set point. See LASer:MDP for a definition of the setpoint response value.
See Also: LASer:MDP
LASer:STB?

Synopsis
Query the laser status byte

Syntax
LASer:STB?

Details
Returns a summary of the enabled conditions within the laser condition and event registers. These bits mirror the bits in the Status Byte Register.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>2</td>
<td>4</td>
<td>Event status register summary</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>Condition status register summary</td>
</tr>
</tbody>
</table>

The values are additive, so a return value of 0, 4, 8, or 12 is possible.

See Also

LASer:STEP

Synopsis
Set laser step size

Syntax
LASer:STEP size

Details
The command sets the laser step size used by the LASer:INC or LASer:DEC commands.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>1 to 65000</td>
<td>Step size</td>
</tr>
</tbody>
</table>

A step of 1 equates to 0.01mA, 0.01mW, or 1μA, depending on the control mode.

See Also
LASer:DEC, LASer:INC, LASer:STEP?

LASer:STEP?

Synopsis
Query the laser step size

Syntax
LASer:STEP?

Details
Returns the value of the laser step size. See LASer:STEP for a definition of the size response value.

See Also
LASer:STEP

LASer:T?

Synopsis
Queries the converted temperature measurement of the auxiliary temperature sensor

Syntax
LASer:T?

Details
Returns the converted temperature measurement, in °C, of the auxiliary temperature sensor input. The conversion from resistance to temperature is done using the Steinhard-Hart formula and the constants set by the LASer:CONST command.

See Also
LASer:CONST, LASer:R?
LASer:TOLerance

Synopsis
Set the laser tolerance criteria

Syntax
LASer:TOLerance tolerance, time

Details
The LASer:TOLerance command allows control over when the output of the laser driver is considered in tolerance (or stable), in order to satisfy the tolerance condition of the operation complete definition. When used in conjunction with the *WAI command, it can control when the next command is processed, delaying processing until the output stabilizes at its set point.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tolerance</td>
<td>0 to 100</td>
<td>Current tolerance, in milliamps</td>
</tr>
<tr>
<td>time</td>
<td>0.1 to 50</td>
<td>Time window in seconds</td>
</tr>
</tbody>
</table>

To be considered in tolerance, the measured current must be within the set point plus or minus the tolerance value (the tolerance window) for time seconds. Any time it leaves the tolerance window, the timer will reset to zero and begin counting the next time it enters the tolerance window.

In photodiode current mode, the tolerance is fixed at 50μA. In photodiode power mode, tolerance is fixed at 50mW. In voltage control mode, tolerance is fixed at 50mV.

See Also
LASer:TOLerance?

LASer:TOLerance?

Synopsis
Query the laser tolerance criteria

Syntax
LASer:TOLerance?

Details
Returns the value of the laser tolerance criteria. See LASer:TOLerance for a definition of the tolerance and time response values.

See Also
LASer:TOLerance

LASer:TRIGger

Synopsis
Generates a single trigger

Syntax
LASer:TRIGger

Details
The LASer:TRIGger command is used to generate a trigger into the QCW system, and acts exactly like a single rising edge on the Trigger Input BNC. See the manual section on QCW operation for more information on triggering.

Support
Only supported on QCW-equipped controllers.

LASer:USERCAL:EDIT

Synopsis
Enable or disabled user calibration editing
Syntax: \texttt{LASer:USERCAL:EDIT \textit{enable}}

Details: Sets the edit enable state for user calibration. A LASer:USERCAL:PUT command will fail until the editing is enabled with this command. The edit state will automatically be set to false after a \texttt{*RST} command or power cycle.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{enable}</td>
<td>0</td>
<td>User calibration editing disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>User calibration editing enabled</td>
</tr>
</tbody>
</table>

This is a global command: enabling/disabling user calibration editing for one channel will enable/disable for all channels in the system.

See Also: LASer:USERCAL:EDIT?, LASer:USERCAL:PUT

Support: This function is only available in firmware version 2.0 and later.

\textbf{LASer:USERCAL:EDIT?}

Synopsis: Query the state of the user calibration edit enable flag

Syntax: \texttt{LASer:USERCAL:EDIT?}

Details: Returns 0 if user calibration editing is disabled, and 1 if user calibration editing is enabled.

See Also: LASer:USERCAL:EDIT

Support: This function is only available in firmware version 2.0 and later.

\textbf{LASer:USERCAL:GET?}

Synopsis: Query a laser USERCAL setting

Syntax: \texttt{LASer:USERCAL:GET? \textit{index}}

Details: Returns the slope and offset compensation values for a specific user calibration \textit{index}. See LASer:USERCAL:PUT for a definition of the \textit{index} argument and \textit{slope} and \textit{offset} response values.

See Also: LASer:USERCAL:PUT

Support: This function is only available in firmware version 2.0 and later.

\textbf{LASer:USERCAL:GETALL?}

Synopsis: Query all laser USERCAL settings

Syntax: \texttt{LASer:USERCAL:GETALL? \textit{addterm}}

Details: Returns the slope and offset compensation values for all user calibration indexes. If \textit{addterm} is non-zero, command terminator (CR, LF, or CR/LF) will be sent after each index. See LASer:USERCAL:PUT for a definition of the \textit{index} argument and \textit{slope} and \textit{offset} response values.

See Also: LASer:USERCAL:PUT
LASer:USERCAL:PUT

Synopsis
Sets a USERCAL value

Syntax
LASer:USERCAL:PUT index, slope, offset

Details
The command sets the user calibration setting for a specific index, allowing for user compensation of measurements or set points. The default value for all slopes is 1, and the default value for all offsets is 0.

Compensation is applied according to the following formula:

\[
\text{compensated} = \text{slope} \times \text{uncompensated} + \text{offset}
\]

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
<td>Io set point, low range</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Io set point, high range</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Im set point</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Vf set point</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Vf set point, remote sense</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Io measurement, low range</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Io measurement, high range</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Im measurement</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Vf measurement</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Vf measurement, remote sense</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Io measurement, low range, QCW mode</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Io measurement, high range, QCW mode</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Im measurement, QCW mode</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Vf measurement, QCW mode</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Vf measurement, remote sense, QCW mode</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Auxiliary 1 voltage measurement</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Auxiliary 2 voltage measurement</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Auxiliary 1 resistance measurement</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Auxiliary 2 resistance measurement</td>
</tr>
<tr>
<td>slope</td>
<td>0.9 to 1.1</td>
<td>Slope compensation</td>
</tr>
<tr>
<td>offset</td>
<td>±5% of range</td>
<td>Offset compensation</td>
</tr>
</tbody>
</table>

LASer:USERCAL:PUT is only supported on certain instruments. Not all indexes are supported in every instrument. See your user’s manual for details on what measurements are supported.

You must enable editing of user calibration values with the LASer:USERCAL:EDIT command.

See Also
LASer:USERCAL:EDIT, LASer:USERCAL:GET?

Support
This function is only available in firmware version 2.0 and later.

LASer:USERCAL:RESET

Synopsis
Resets all laser user calibration settings to factory defaults
Syntax: `LASer:USERCAL:RESET`

Details: Resets all laser user calibration slopes to 1 and all offsets to 0.

See Also: `LASer:USERCAL:EDIT`

Support: This function is only available in firmware version 2.0 and later.

LASer:VSENSE

Synopsis: Select local or remote voltage sense

Syntax: `LASer:VSENSE select`

Details: For instruments that support selectable local/remote voltage sense, this command selects local or remote sense.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>select</td>
<td>0</td>
<td>Local voltage sense</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Remote voltage sense</td>
</tr>
</tbody>
</table>

See Also: `LASer:VSENSE?`

Support: Only supported on instrument equipped with 4-wire voltage sense capability. See your controller’s manual for more details.

LASer: VSENSE?

Synopsis: Queries the voltage sense selection.

Syntax: `LASer:VSENSE?`

Details: For instruments that support selectable local/remote voltage sense, this command returns the `select` value. See the `LASer:VSENSE` command for more information.

See Also: `LASer:VSENSE`

Support: Only supported on instrument equipped with 4-wire voltage sense capability. See your controller’s manual for more details.

LOCAL

Synopsis: Returns instrument to local mode

Syntax: `LOCAL`

Details: After issuing the `LOCAL` command, the remote light will go out, and front panel controls will be enabled.

MESsage

Synopsis: Set the message buffer

Syntax: `MESsage string`
Details Sets the internal message buffer to the value of string, up to a maximum of 16 characters.

See Also MESsage?

MESsage?

Synopsis Query the message buffer

Syntax MESsage?

Details Returns the value of the message buffer.

See Also MESsage

ONDELAY

Synopsis Set the laser output on delay

Syntax ONDELAY time

Details The ONDELAY command controls how long the laser driver will delay between the time the user or command turns on the laser on LED and when the output is actually turned on.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>0 to 30000</td>
<td>On delay, in milliseconds</td>
</tr>
</tbody>
</table>

Setting the ONDELAY value to 0 disables the delay feature.

See Also ONDELAY?

ONDELAY?

Synopsis Query the laser output on delay

Syntax ONDELAY?

Details Returns the value of the laser output on delay. See the ONDELAY command for a complete definition of possible return values.

See Also ONDELAY

RADix

Synopsis Set the radix (number base)

Syntax RADix base

Details By default, the instrument is set to decimal number base. Changing to an alternate number base will cause queries for integer values to be returned in the specified number base.
Argument Value Description

<table>
<thead>
<tr>
<th>base</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIN</td>
<td>base</td>
<td>Binary format (base 2)</td>
</tr>
<tr>
<td>OCT</td>
<td>base</td>
<td>Octal format (base 8)</td>
</tr>
<tr>
<td>DEC</td>
<td>base</td>
<td>Decimal format (base 10)</td>
</tr>
<tr>
<td>HEX</td>
<td>base</td>
<td>Hexadecimal format (base 16)</td>
</tr>
</tbody>
</table>

See the section *Working with Radixes and Hex Floats* for more information on using this command.

See Also: RADix?

RADix?

Synopsis: Query the radix (number base)

Syntax: RADix?

Details: Returns the current number base. See the RADix command for a complete definition of possible return values.

See Also: RADix

REMERR

Synopsis: Set display of errors while in remote mode

Syntax: REMERR enable

Details: This command controls if the instrument will display errors while in remote mode. If set to zero, then errors will not be displayed. If set to one, errors will be displayed. Errors will always accumulate in the error queue.

Instruments without a display are a special case: a REMERR 0 will disable the error LED from being lit on error at any time, regardless if the instrument has been sent a command (and therefore placed in remote mode) or not. However, the error LED can still be turned on with the ERRORLED command when ERRORLEDMODE is 1.

<table>
<thead>
<tr>
<th>Argument Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Do not display errors or turn on error LED in remote mode</td>
</tr>
<tr>
<td></td>
<td>Display errors in remote mode</td>
</tr>
</tbody>
</table>

See Also: REMERR?, ERRORLED, ERRORLEDMODE, ERR?, ERRSTR?

REMERR?

Synopsis: Query the display of errors while in remote mode

Syntax: REMERR?

Details: Returns the current REMERR setting. See the REMERR command for a complete definition of possible return values.

See Also: REMERR
REMSET

Synopsis
Enables the changing of the set point and on/off control from the front panel while in remote mode

Syntax
REMERR enable

Details
This command enables the changing of the set point and on/off control from the front panel while in remote mode. By default, when in remote mode, the set point cannot be changed and output cannot be turned on or off, as most programs do not react well to the set point or on/off state being changed asynchronously from the program operation. However, it can be quite useful to be able to continue to adjust the instrument even when it is under remote control, and this command enables or disabled this capability.

Alternatively, if your program no longer needs to remotely control the instrument, you can use the LOCAL command to return the instrument to local control.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Prevent set point and on/off change while in remote mode</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enable set point and on/off change while in remote mode</td>
</tr>
</tbody>
</table>

See Also
REMSET?, LOCAL

REMSET?

Synopsis
Query the state of the remote set mode

Syntax
REMSET?

Details
Returns the current REMSET setting. See the REMSET command for more information.

See Also
REMSET

SCRIPT:GET?

Synopsis
Retrieve a script

Syntax
SCRIPT:GET? index

Details
Returns the script stored in position index. See the Using Scripts section above for more information.

See Also
SCRIPT:PUT

Support
This function is only available in firmware version 2.0 and later.

SCRIPT:GO

Synopsis
Remotely executes a script

Syntax
SCRIPT:GO index

Details
Executes the script stored at position index. See the Using Scripts section above for more information.

See Also
SCRIPT:PUT
Support

This function is only available in firmware version 2.0 and later.

SCRIPT:PUT

Synopsis
Set a script

Syntax
SCRIPT:PUT index, script

Details
Stores a script for execution by a function key, or with the SCRIPT:GO command. See the Using Scripts section above for more information.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>Script index, 1 to 4</td>
</tr>
<tr>
<td>script</td>
<td>Script, maximum 200 characters.</td>
</tr>
</tbody>
</table>

See Also
SCRIPT:GET?, SCRIPT:GO

Support
This function is only available in firmware version 2.0 and later.

SN?

Synopsis
Query the serial number of the instrument

Syntax
SN?

Details
Returns the serial number of the instrument. This is the same information that is part of the *IDN? query.

See Also
IDN

TEC:ACTIVESENsor

Synopsis
Selects the active sensor

Syntax
TEC:ACTIVESENsor sensor index

Details
For controllers that support multiple primary sensors, this command selects which primary sensor will be used for feedback in the temperature control loop. The primary sensor type must be set to a sensor type other than disabled prior to selecting it.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensor index</td>
<td>Sensor index of the primary sensor to use for the control loop.</td>
</tr>
</tbody>
</table>

Only primary sensors can be selected. Only supported on instruments that feature multiple primary sensors.

See Also
TEC:AUTOTUNE?

TEC:ACTIVESENsor?

Synopsis
Query the active sensor

Syntax
TEC:ACTIVESENsor?
Details Returns the active sensor. See the TEC:ACTIVESENsor for a definition of the sensor index reply.

See Also TEC:ACTIVESENsor

TEC:ANALOG:MODE

Synopsis Enable or disable the analog set point mode

Syntax TEC:ANALOG:MODE enable

Details Enables or disables the analog set point mode.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>1 to enable, 0 to disable</td>
</tr>
</tbody>
</table>

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also TEC:AUTOTUNE?

TEC:ANALOG:MODE?

Synopsis Query the analog set point mode

Syntax TEC:ANALOG:MODE?

Details Returns the enable state of the analog set point mode.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>1 if enabled, 0 if disabled</td>
</tr>
</tbody>
</table>

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also TEC:ANALOG:MODE

TEC:ANALOG:OUT

Synopsis Sets analog output function

Syntax TEC:ANALOG:OUT function [, parameter]

Details Sets the analog output function that controls the voltage of the analog output. The parameter argument is only used on functions 1, 2, and 3.
Argument Description

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled (output zero volts)</td>
</tr>
<tr>
<td>1</td>
<td>Direct set of voltage</td>
</tr>
<tr>
<td>2</td>
<td>Temperature error</td>
</tr>
<tr>
<td>3</td>
<td>Temperature</td>
</tr>
<tr>
<td>4</td>
<td>Current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.00 to +5.00</td>
<td>When function=1, directly controls the output voltage</td>
</tr>
<tr>
<td>0 to 2</td>
<td>When function=2, selects error transfer function</td>
</tr>
<tr>
<td>0 to 2</td>
<td>When function=3, selects temperature transfer function</td>
</tr>
</tbody>
</table>

See the instrument’s user’s manual for more information on the use of the analog output interface. Only supported on instruments that feature an analog output function.

See Also

| TEC: ANALOG:RES? |

TEC: ANALOG:OUT?

Synopsis
Query the analog output function

Syntax

```
TEC:ANALOG:OUT?
```

Details

Returns the enable state of the analog output function. See TEC:ANALOG:OUT for a definition of the function and parameter returned by the query.

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also

| TEC: ANALOG:OUT |

TEC: ANALOG:RES

Synopsis
Sets the resolution of the analog temperature set point

Syntax

```
TEC:ANALOG:RES resolution
```

Details

Sets the resolution of the analog temperature set point.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Temperature set will be rounded to nearest 1°C</td>
</tr>
<tr>
<td>1</td>
<td>Temperature set will be rounded to nearest 0.1°C</td>
</tr>
<tr>
<td>2</td>
<td>Temperature set will be rounded to nearest 0.01°C</td>
</tr>
</tbody>
</table>

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also

| TEC: ANALOG:RES |

TEC: ANALOG:RES?

Synopsis
Query the resolution of the analog temperature set point

Syntax

```
TEC:ANALOG:MODE?
```

Details

Returns the enable state of the analog set point mode.
TEC:ANALOG:RES

Synopsis
Sets the temperature resolution for the analog set point.

Syntax

```
TEC:ANALOG:RES resolution
```

Details
- `resolution`: The temperature resolution can be set to 0, 1, or 2.
- **0**: Temperature set will be rounded to nearest 1°C.
- **1**: Temperature set will be rounded to nearest 0.1°C.
- **2**: Temperature set will be rounded to nearest 0.01°C.

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also
- TEC:ANALOG:THIGH
- TEC:ANALOG:TLOW

TEC:ANALOG:THIGH

Synopsis
Sets the upper temperature used in scaling the analog temperature set point.

Syntax

```
TEC:ANALOG:THIGH temperature
```

Details
- `temperature`: Set the TANALOG-HIGH used in the calculation of the analog temperature set point.

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also
- TEC:ANALOG:THIGH?

TEC:ANALOG:THIGH?

Synopsis
Query the upper temperature used in scaling the analog temperature set point.

Syntax

```
TEC:ANALOG:THIGH?
```

Details
- Returns the TANALOG-HIGH used in the calculation of the analog temperature set point.

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also
- TEC:ANALOG:THIGH

TEC:ANALOG:TLOW

Synopsis
Sets the lower temperature used in scaling the analog temperature set point.

Syntax

```
TEC:ANALOG:TLOW temperature
```

Details
- `temperature`: Set the TANALOG-LOW used in the calculation of the analog temperature set point.

See the instrument’s user’s manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also
- TEC:ANALOG:TLOW?
TEC: ANALOG:TLOW?

Synopsis
Query the lower temperature used in scaling the analog temperature set point

Syntax
TEC:ANALOG:TLOW?

Details
Returns the $T_{ANALOG-LOW}$ used in the calculation of the analog temperature set point.

See the instrument's user's manual for more information on the use of the analog interface. Only supported on instruments that feature an analog input function.

See Also
TEC:ANALOG:TLOW

TEC:AUTOON

Synopsis
Disables or enables the automatic output on at controller power up

Syntax
TEC:AUTOON mode [, delay, [temp]]

Details
The TEC:AUTOON command is used to automatically turn the TEC on when the controller is powered up, and optionally override the set point to a specific starting temperature.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>0</td>
<td>Disables automatic on</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables automatic on, uses last temperature set point</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Enables automatic on, override set point</td>
</tr>
<tr>
<td>delay</td>
<td>0 to 3600</td>
<td>Delay, in seconds, before output is turned on</td>
</tr>
<tr>
<td>temp</td>
<td>within limits</td>
<td>Temperature set point override (mode 2 only)</td>
</tr>
</tbody>
</table>

If the TEC output is commanded on or off before the delay expires (via a button on the front panel, a signal from the control interface, or a TEC:OUT command), it will cancel any pending automatic turn on.

See Also
TEC:AUTOON?

TEC:AUTOON?

Synopsis
Query the automatic turn-on settings

Syntax
TEC:AUTOON?

Details
Returns the mode, delay, and set point used for the automatic turn-on. All parameters are returned, regardless of the mode. See TEC:AUTOON for a description of these parameters.

See Also
TEC:AUTOON

TEC:AUTOTUNE

Synopsis
Start the AutoTune process

Syntax
TEC:AUTOTUNE temperature
The TEC:AUTOTUNE command is used to start the AutoTune process, using the temperature parameter as the AutoTune point. The current and temperature limits should be properly setup prior to starting AutoTune.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>AutoTune test point, in °C</td>
</tr>
</tbody>
</table>

See the AutoTune section in the user's manual for further information.

TEC:AUTOTUNE?

Synopsis: Query the AutoTune result

Syntax: TEC:AUTOTUNE?

Details: Returns the result of the last AutoTune process.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No AutoTune has been performed since last power-up</td>
</tr>
<tr>
<td>1</td>
<td>AutoTune in process</td>
</tr>
<tr>
<td>2</td>
<td>Last AutoTune failed</td>
</tr>
<tr>
<td>3</td>
<td>Last AutoTune successful</td>
</tr>
</tbody>
</table>

The TEC:AUTOTUNESTATE? provides additional details during the AutoTune process.

See Also: TEC:AUTOTUNE, TEC:AUTOTUNESTATE?

TEC:AUTOTUNESTATE?

Synopsis: Query the AutoTune result

Syntax: TEC:AUTOTUNESTATE?

Details: Returns the progress of the AutoTune process.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No AutoTune in process</td>
</tr>
<tr>
<td>100</td>
<td>AutoTune initializing</td>
</tr>
<tr>
<td>200</td>
<td>AutoTune in P ramp phase</td>
</tr>
<tr>
<td>300</td>
<td>AutoTune in P stabilize phase</td>
</tr>
<tr>
<td>400</td>
<td>AutoTune in I ramp phase</td>
</tr>
<tr>
<td>500</td>
<td>AutoTune Complete</td>
</tr>
</tbody>
</table>

See Also: TEC:AUTOTUNE

TEC:CABLER

Synopsis: Set the cable resistance

Syntax: TEC:CABLER resistance

Details: The TEC:CABLER command can be used to set the cable resistance, which is then used to remove voltage drops from the TEC voltage measurement.
Argument	**Description**
resistance | Resistance of the cable, in ohms.

See the user’s manual for additional information on using this setting.

See Also
TEC:CABLER?, TEC:VTE?

TEC:CABLER?

Synopsis
Query the cable resistance value

Syntax
TEC:CABLER?

Details
Returns the value of the cable resistance value. See TEC:CABLER for a definition of the resistance response value.

See Also
TEC:CABLER

TEC:CABLETYPE?

Synopsis
Returns the cable type (high or low current)

Syntax
TEC:CABLETYPE?

Details
For instruments that support a cable type identification (such as the 5300 TECSource), this command returns the current rating for the cable plugged into the instrument. If the instrument does not support cable type identification, a “0” is returned for instruments rated for 5A or less (such as 5240 TECSource), otherwise a “2” is returned.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5A (or less) cable</td>
</tr>
<tr>
<td>1</td>
<td>10A cable</td>
</tr>
<tr>
<td>2</td>
<td>Cable type unknown</td>
</tr>
</tbody>
</table>

TEC:CHAN

Synopsis
Set the TEC channel

Syntax
TEC:CHAN channel

Details
For controllers with more than one TEC channel, the TEC:CHAN command selects the active channel.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel</td>
<td>TEC channel, from 1 to n</td>
</tr>
</tbody>
</table>

See Also
TEC:CHAN?, LAS:CHAN

TEC:CHAN?

Synopsis
Returns the active TEC channel

Syntax
TEC:CHAN?

Details
Returns the active TEC channel in a multi-channel TEC controller.
See Also TEC:CHAN

TEC:COND?

Synopsis Query TEC condition

Syntax TEC:COND?

Details Returns the TEC condition register.

<table>
<thead>
<tr>
<th>Response</th>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>conditions 0</td>
<td>1</td>
<td>1</td>
<td>Current limit</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Voltage limit</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Sensor limit</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Temperature high limit</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Temperature low limit</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Sensor shorted</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Sensor open</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>TEC open circuit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Out of tolerance</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Output on</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Thermal run-away</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
<td>Unused</td>
<td></td>
</tr>
</tbody>
</table>

See Also TEC:ENABLE:COND, *STB?

TEC:CONST

Synopsis Set sensor temperature conversion constants for the active sensor

Syntax TEC:CONST A, B [, C [, R0]]

Details The TEC:CONST command sets the sensor constants for conversion of the sensor value to temperature for the active sensor. The number of parameters are dependent on the sensor type.

For the thermistor sensors, A, B, and C are used as constants for the Steinhart-Hart equation for conversion of resistance to temperature. By default, the thermistor constants are set to those for a BetaTHERM 10K3A1 thermistor.

For LM335 and AD590 sensors, A is used as a slope correction (M) term and B is an offset (B) term. By default, A is set to one and B is set to zero.

For RTD sensors, A, B, C, and R0 are used as constants for the RTD to temperature equation. By default, the RTD constants are set to the standard 100Ω Laboratory values.
<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Thermistors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>± 9.9999</td>
<td>First Steinhart-Hart constant (x 10^{-3})</td>
</tr>
<tr>
<td>B</td>
<td>± 9.9999</td>
<td>Second Steinhart-Hart constant (x 10^{-4})</td>
</tr>
<tr>
<td>C</td>
<td>± 9.9999</td>
<td>Third Steinhart-Hart constant (x 10^{-7})</td>
</tr>
<tr>
<td>For LM335:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>± 9.9999</td>
<td>Slope term</td>
</tr>
<tr>
<td>B</td>
<td>± 99.9999</td>
<td>Offset term, in °C</td>
</tr>
<tr>
<td>For AD590:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>± 9.9999</td>
<td>Slope term</td>
</tr>
<tr>
<td>B</td>
<td>± 99.9999</td>
<td>Offset term, in °C</td>
</tr>
<tr>
<td>For RTD:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>± 9.9999</td>
<td>First RTD constant (x 10^{-3})</td>
</tr>
<tr>
<td>B</td>
<td>± 9.9999</td>
<td>Second RTD constant (x 10^{-6})</td>
</tr>
<tr>
<td>C</td>
<td>± 9.9999</td>
<td>Third RTD constant (x 10^{-12})</td>
</tr>
<tr>
<td>R0</td>
<td>10 to 220</td>
<td>Nominal resistance at 0°C (Ω)</td>
</tr>
</tbody>
</table>

Some vendors may refer to A, B, and C as C1, C2, & C3.

For additional information, see the sensor sections in the user’s manual.

See Also

TEC:CONST?

Synopsis
Query sensor temperature conversion constants for the active sensor

Syntax
TEC:CONST?

Details
Returns the sensor temperature conversion constants. See the TEC:CONST command for a complete definition of the A, B, C, and R0 response values.

See Also
TEC:CONST

TEC:CONSTIDX

Synopsis
Set sensor temperature conversion constants for a specific sensor index and type

Syntax
TEC:CONSTIDX sensor class, sensor type, A, B [, C [, R0]]

Details
The TEC:CONSTIDX command works identically to the TEC:CONST command, except that the sensor index and sensor type is explicitly set by the command arguments. The number of additional parameters is dependent on the sensor type.

See TEC:CONST for details on the sensor parameters (A, B, C, and R0). Sensor class and sensor type are defined below:
Argument Value Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensor class</td>
<td>1</td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Auxillary</td>
</tr>
<tr>
<td>sensor type</td>
<td>0</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100uA Thermistor</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10uA Thermistor</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>LM335</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>AD590</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>RTD</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>RTD (4-wire sense)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1mA Thermistor</td>
</tr>
</tbody>
</table>

See Also

TEC:CONST, TEC:CONSTIDX?

TEC:CONSTIDX?

Synopsis
Query sensor temperature conversion constants for a specific sensor index and type

Syntax

```
TEC:CONSTIDX? sensor class, sensor type
```

Details

Complementary function to TEC:CONSTIDX, and returns the sensor temperature conversion constants for a specific sensor class and sensor type. See the TEC:CONSTIDX command for a complete definition of the `sensor class` and `sensor type` arguments.

See Also

TEC:CONSTIDX

TEC:DEC

Synopsis
Decrement the TEC set point

Syntax

```
TEC:DEC steps
```

Details

The TEC:DEC command uses the step size defined with the TEC:STEP command to decrement the TEC set point. The set point is decremented `steps` times the step size.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>steps</td>
<td>1 to 65000</td>
<td>Number of steps to decrement</td>
</tr>
</tbody>
</table>

See Also

TEC:INC, TEC:STEP

TEC:DIO:IN?

Synopsis
Query the state of a digital input

Syntax

```
TEC:DIO:IN? port
```

Details

Returns the state of a specific digital input port.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>0</td>
<td>Interlock</td>
</tr>
<tr>
<td></td>
<td>1 to max</td>
<td>Digital input pin</td>
</tr>
</tbody>
</table>

The return value will be zero if in the input is low (or interlock is shorted), 1 if the input is high (or the interlock is open). An unconnected digital input may be high or low,
depending on the electrical configuration of the port. See the user’s manual for more details.

Only supported on instruments that feature digital input capability.

See Also

TEC:DIO:INMODE

TEC:DIO:INMODE

Synopsis

Set the digital input mode

Syntax

TEC:DIO:INMODE \(\text{port, function [\text{invert}]} \)

Details

Selects the function and invert setting for a specific input port. Input ports can be used as additional interlocks (function 1), or to remotely control the on/off state of the instrument (function 2). The invert setting is used to control if the function is active when the pin is high (invert 0) or when the pin is low (invert 1).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>0</td>
<td>Interlock input</td>
</tr>
<tr>
<td></td>
<td>1 to max</td>
<td>Digital input pin</td>
</tr>
<tr>
<td>function</td>
<td>0</td>
<td>Monitor only (no function)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Interlock</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Output On</td>
</tr>
<tr>
<td>invert</td>
<td>0</td>
<td>No logic inversion (function is active high)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Inverted logic (function is active low)</td>
</tr>
</tbody>
</table>

Only supported on instruments that feature digital input capability.

See Also

TEC:DIO:IN?

TEC:DIO:INMODE?

Synopsis

Query the digital input mode

Syntax

TEC:DIO:INMODE? \(\text{port} \)

Details

Returns the input mode and invert setting for a specific input port. See TEC:DIO:INMODE for a definition of the port argument and function and invert response values.

Only supported on instruments that feature digital input capability.

See Also

TEC:DIO:INMODE

TEC:DIO:OUT?

Synopsis

Query the state of a digital output

Syntax

TEC:DIO:OUT? \(\text{port} \)

Details

Returns the state of a specific digital output port.
Argument Value Description
port 0 Relay
1 to max Digital output pin

The return value will be zero if in the output is low (or the relay is open), 1 if the output is high (or the relay is closed).

Only supported on instruments that feature digital output capability.

See Also TEC:DIO:OUTMODE

TEC:DIO:OUTMODE

Synopsis Set the digital input mode

Syntax TEC:DIO:OUTMODE port, function [,invert]

Details Selects the function and invert setting for a specific output port. Output ports can be used to signal various instrument states or directly controlled. The invert setting is used to control if the pin is set to high function is active (invert 0) or low (invert 1). The relay only supports an invert setting of zero.

Argument Value Description
port 0 Relay
1 to max Digital output pin
function 0 Pin output low (off)
1 Pin output high (on)
2 Output on
3 Temperature stable
4 Temperature limit
5 Current limit
6 Remote mode
7 Voltage limit
invert 0 No logic inversion (pin is high if function is active)
1 Inverted logic (pin is low if function is active)

The invert setting is ignored when the function is 0 or 1.

Only supported on instruments that feature digital output capability.

See Also TEC:DIO:OUTMODE?, TEC:DIO:OUT

TEC:DIO:OUTMODE?

Synopsis Query the digital output mode

Syntax TEC:DIO:OUTMODE? port

Details Returns the output mode and invert setting for a specific output port. See TEC:DIO:OUTMODE for a definition of the port argument and function and invert response values.

Only supported on instruments that feature digital output capability.

See Also TEC:DIO:OUTMODE
TEC:DISplay

Synopsis Set the display enable state
Syntax TEC:DISplay enable
Details The TEC:DISplay command can be used to completely lock out local operation of the instrument and display “Display Disabled” instead of the normal display.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Disables the display and front panel</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables the display and front panel</td>
</tr>
</tbody>
</table>

Once the display is disabled, the front panel is completely locked out. The only way to restore functionality to the front panel is to issue a “TEC:DISplay 1” or cycle power on the unit.

See Also TEC:DISplay?

TEC:DISplay?

Synopsis Query the display enable state
Syntax TEC:DISplay?
Details Returns the value of the TEC display enable state. See TEC:DISplay for a definition of the enable response value.

See Also TEC:DISplay

TEC:ENABLE:AUXLIMITS

Synopsis Enable or disable the use of auxiliary temperature limits
Syntax TEC:ENABLE:AUXLIMITS enable
Details When enabled, the auxiliary temperature sensor limits become active, and if the measurement exceeds its high or low limit, a corresponding temperature high or low limit condition will be generated. Depending on the setting in the Output Off Enable register, this can then shut down the output.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Disable auxiliary temperature sensor limits</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables auxiliary temperature sensor limits</td>
</tr>
</tbody>
</table>

See Also TEC:ENABLE:AUXLIMITS?, TEC:THI, TEC:TLO

TEC:ENABLE:AUXLIMITS?

Synopsis Query the state of the auxiliary temperature limit enable
Syntax TEC:ENABLE:AUXLIMITS?
Details Returns the state of auxiliary temperature limit enable. See the TEC:ENABLE:AUXLIMITS command for a definition of enable response.
TEC:ENABLE:COND
Synopsis
Set TEC Condition Enable register

Syntax
TEC:ENABLE:COND conditions

Details
Enables reporting of selected conditions to the Status Byte Register. See the TEC:COND command for a definition of the conditions parameter. The default value for this register is 0.

See Also
TEC:ENABLE:COND?, TEC:COND?

TEC:ENABLE:COND?
Synopsis
Query TEC Condition Enable register

Syntax
TEC:ENABLE:COND?

Details
Returns the value of the TEC Condition Enable register. See the TEC:COND command for a definition of the conditions response.

See Also
TEC:ENABLE:COND, TEC:COND?

TEC:ENABLE:EVENT
Synopsis
Set TEC Event Enable register

Syntax
TEC:ENABLE:EVENT events

Details
Enables reporting of selected events to the Status Byte Register. See the TEC:EVENT command for a definition of the events parameter. The default value for this register is 0.

See Also
see also TEC:ENABLE:EVENT?, TEC:EVENT?

TEC:ENABLE:EVENT?
Synopsis
Query TEC Event Enable register

Syntax
TEC:ENABLE:EVENT?

Details
Returns the value of the TEC Event Enable register. See the TEC:EVENT command for a definition of the events response.

See Also
TEC:ENABLE:EVENT, TEC:EVENT?

TEC:ENABLE:NONACTIVELIMITS
Synopsis
Enable or disable the use of temperature limits for non-active primary sensors

Syntax
TEC:ENABLE:NONACTIVELIMITS enable

Details
When enabled, the temperature sensor limits for non-active primary sensors become active, and if the measurement exceeds its high or low limit, a corresponding
temperature high or low limit condition will be generated. Depending on the setting in the Output Off Enable register, this can then shut down the output.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Disable non-active primary temperature sensor limits</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables non-active primary temperature sensor limits</td>
</tr>
</tbody>
</table>

See Also
TEC:ENABle:NONACTIVELIMITS?, TEC:THI, TEC:TLO

TEC:ENABle:NONACTIVELIMITS?

Synopsis
Query the state of the temperature limits for non-active primary sensors

Syntax
TEC:ENABle:NONACTIVELIMITS?

Details
Returns the state of temperature limits for non-active primary sensors enable. See the TEC:ENABle:NONACTIVELIMITS command for a definition of enable response.

See Also
TEC:ENABle:NONACTIVELIMITS

TEC:ENABle:OUTOFF

Synopsis
Set the Output Off Enable register

Syntax
TEC:ENABle:OUTOFF outoff

Details
The Output Off register controls what conditions will cause the TEC output to be turned off.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outoff</td>
<td>0</td>
<td>1</td>
<td>Current limit</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>Voltage limit</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>Sensor limit</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>Temperature high limit</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>Temperature low limit</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>32</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>Sensor open</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>128</td>
<td>TEC open circuit</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>256</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>512</td>
<td>Out of tolerance</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1024</td>
<td>Sensor short</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2048</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4096</td>
<td>Thermal run-away</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8192</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16384</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>32768</td>
<td>Unused</td>
</tr>
</tbody>
</table>

Bold elements indicate default settings. In earlier versions of firmware, bit 8 was “Sensor type changed” and always enabled, but was removed in versions 3.0 and beyond.

The default value for this register is 1240 for firmware versions 3.0 and beyond, and 1496 for earlier versions of firmware.

See Also
TEC:ENABle:OUTOFF?
TEC:ENABle:OUTOFF?

Synopsis
Query the Output Off Enable register

Syntax
TEC:ENABle:OUTOFF?

Details
Returns the value of the Output Off register. See the TEC:ENABle:OUTOFF command for definition of `outoff` response value.

See Also
TEC:ENABle:OUTOFF

TEC:EVEnt?

Synopsis
Query the TEC event register

Syntax
TEC:EVEnt?

Details
Returns the TEC event register.

<table>
<thead>
<tr>
<th>Response</th>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>0</td>
<td>1</td>
<td>Current limit</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>Voltage limit</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>Sensor limit</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>Temperature high limit</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>Temperature low limit</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>32</td>
<td>Sensor shorted</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>Sensor open</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>128</td>
<td>TEC open circuit</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>256</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>512</td>
<td>Out of tolerance changed state</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1024</td>
<td>Output changed state</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2048</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4096</td>
<td>Thermal run-away</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8192</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16384</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>32768</td>
<td>Unused</td>
</tr>
</tbody>
</table>

After reading the event register, the event register is set to zero.

See Also
TEC:ENABle:EVEnt

TEC:FAN

Synopsis
Set the external fan speed

Syntax
TEC:FAN `speed[, mode[, delay]]`

Details
Set the external fan speed.
Argument Value Description

speed
OFF, SLOW, MEDIUM, FAST, or 4.0 to 12.0
Fan speed

mode
1, 2, or 3
Fan delay mode:
1 = Auto (fan off when TEC off)
2 = On (fan always on)
3 = Delayed off (fan turns off *delay* minutes after TEC turned off).
4 = Cool only (fan operates only when TEC is cooling)
5 = Heat only (fan operates only when TEC is heating)

delay
1 to 240
Minutes to delay turning fan off (only applies to ‘Delayed off’ *mode*).

The values SLOW, MEDIUM, and FAST correspond to 9V, 10.5V, and 12V, respectively. The fan speed can also be controlled by selecting a specific voltage to drive the fan. When using external fan control, ensure your fan and voltage setting are properly match, or damage to the fan may occur.

Setting the *mode* to 1 will turn the fan off whenever the output is off. Setting the *mode* to 2 will turn the fan on always, regardless of the TEC output state. Setting the *mode* to 3 will delay the turning off of the fan to *delay* minutes after the TEC output is turned off.

The *delay* setting only applies when *mode* is set to 3 (delayed off), and sets the number of minutes to delay the fan from turning off after the output has been turned off.

The 5230 does not support the FAN setting.

See Also

TEC:FAN?

TEC:FAN?

Synopsis
Query the external fan speed setting

Syntax
TEC:FAN?

Details
Returns the fan speed setting. See TEC:FAN for a definition of the *speed, mode, and delay* response values.

See Also
TEC:FAN

TEC:GAIN

Synopsis
Set the control loop gain

Syntax
TEC:GAIN *gain*

Details
Set the temperature control loop gain.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gain</td>
<td>1, 3, 5, 10, 30, 50, 100, 300, PID</td>
<td>TEC gain</td>
</tr>
</tbody>
</table>

The 5230 does not support the PID setting.
See Also TEC:GAIN?; TEC:PID

TEC:GAIN?
Synopsis Query the control loop gain
Syntax TEC:GAIN?
Details Returns the value of control loop gain. See TEC:GAIN for a definition of the \textit{gain} response value.
See Also TEC:GAIN; TEC:PID

TEC:HEATCOOL
Synopsis Set the heat/cool mode
Syntax TEC:HEATCOOL \textit{mode}
Details Sets the heat/cool mode.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{mode}</td>
<td>BOTH</td>
<td>Heat and cool</td>
</tr>
<tr>
<td></td>
<td>HEAT</td>
<td>Heat only</td>
</tr>
<tr>
<td></td>
<td>COOL</td>
<td>Cool only</td>
</tr>
</tbody>
</table>

The 5230 does not support the HEATCOOL setting.
See Also TEC:HEATCOOL?

TEC:HEATCOOL?
Synopsis Query the heat/cool mode
Syntax TEC:HEATCOOL?
Details Returns the heat/cool mode setting. See TEC:HEATCOOL for a definition of the \textit{mode} response value.
See Also TEC:HEATCOOL

TEC:INC
Synopsis Increment the TEC set point
Syntax TEC:INC \textit{steps}
Details The TEC: INC command uses the step size defined with the TEC:STEP command to increment the TEC set point. The set point is incremented \textit{steps} times the step size.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{steps}</td>
<td>1 to 65000</td>
<td>Number of steps to increment</td>
</tr>
</tbody>
</table>

See Also TEC:DEC, TEC:STEP
TEC:ITE

Synopsis
Set the TEC current set point

Syntax
TEC:ITE setpoint

Details
Sets the TEC current set point. It must be within the current limit.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setpoint</td>
<td>Current set point, in amps</td>
</tr>
</tbody>
</table>

Not available in 5230 TECSource.

See Also
TEC:SET:ITE?, TEC:ITE?

TEC:ITE?

Synopsis
Query the TEC current

Syntax
TEC:ITE?

Details
The TEC:ITE? Query returns the measured TEC current.

<table>
<thead>
<tr>
<th>Response Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ite ±ITElim</td>
<td>Measure TEC current, in amps</td>
</tr>
</tbody>
</table>

See Also
TEC:LIMit:ITE

TEC:INVERTITE

Synopsis
Controls the ITE invert setting

Syntax
TEC:INVERTITE invert

Details
Changes (inverts) the polarity of the ITE current.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>invert</td>
<td>0</td>
<td>Normal polarity</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Inverted polarity</td>
</tr>
</tbody>
</table>

See Also
TEC:INVERTITE?

Support
This function is only available in firmware version 2.0 and later.

TEC:INVERTITE?

Synopsis
Query the state of the ITE inversion

Syntax
TEC:INVERTITE?

Details
Returns the ITE inversion setting. See TEC:INVERTITE for a definition of the invert response value.

See Also
TEC:INVERTITE

Support
This function is only available in firmware version 2.0 and later.
TEC:LIMit:ITE

Synopsis
Set the TEC current limit

Syntax
TEC:LIMit:ITE \textit{limit}

Details
Sets the TEC current limit.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{limit}</td>
<td>±ITE\textsubscript{max}</td>
<td>TEC current limit, in amps</td>
</tr>
</tbody>
</table>

See Also
TEC:ITE?, TEC:LIMit:ITE?

TEC:LIMit:ITE?

Synopsis
Query the TEC current limit

Syntax
TEC:LIMit:ITE?

Details
Returns the value of the TEC current limit. See TEC:LIMit:ITE for a definition of the \textit{limit} response value.

See Also
TEC:LIMit:ITE

TEC:LIMit:RHI

Synopsis
Set the high sensor limit

Syntax
TEC:LIMit:RHI \textit{limit}

Details
Sets the high sensor limit.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| \textit{limit} | High sensor limit:
Thermistors in kΩ
AD590s in µA
LM335s in mV
RTDs in Ω |

See Also
TEC:LIMit:RHI?

TEC:LIMit:RHI?

Synopsis
Query the high sensor limit

Syntax
TEC:LIMit:RHI?

Details
Returns the value of the high sensor limit. See TEC:LIMit:RHI for a definition of the \textit{limit} response value.

See Also
TEC:LIMit:RHI

TEC:LIMit:RLO

Synopsis
Set the low sensor limit
Syntax	TEC:LIMit:RLO limit

Details | Sets the low sensor limit.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>Low sensor limit: Thermistors in kΩ, AD590s in µA, LM335s in mV, RTDs in Ω</td>
</tr>
</tbody>
</table>

See Also | TEC:LIMit:RLO?

TEC:LIMit:RLO?

Synopsis	Query the low sensor limit

Syntax	TEC:LIMit:RLO?

Details | Returns the value of the low sensor limit. See TEC:LIMit:RLO for a definition of the limit response value.

See Also | TEC:LIMit:RLO

TEC:LIMit:THI

Synopsis	Set the high temperature limit

Syntax	TEC:LIMit:THI limit [, sensor index]

Details | Sets the high temperature limit. If the optional sensor index argument is omitted, the active sensor is used.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>-99 to +250</td>
<td>High temperature limit, in degrees</td>
</tr>
<tr>
<td>sensor index</td>
<td>1 to max</td>
<td>Sensor index</td>
</tr>
</tbody>
</table>

See Also | TEC:LIMit:THI?

TEC:LIMit:THI?

Synopsis	Query the high temperature limit

Syntax	TEC:LIMit:THI? [sensor index]

Details | Returns the value of the high temperature limit. If the optional sensor index argument is omitted, the active sensor is used. See TEC:LIMit:THI for a definition of sensor index argument and the limit response value.

See Also | TEC:LIMit:THI

TEC:LIMit:TLO

Synopsis	Set the low temperature limit

Syntax	TEC:LIMit:TLO limit [,sensor index]
Details Sets the low temperature limit. If the optional sensor index argument is omitted, the active sensor is used.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>-99 to +250</td>
<td>Low temperature limit, in degrees</td>
</tr>
<tr>
<td>sensor index</td>
<td>1 to max</td>
<td>Sensor index</td>
</tr>
</tbody>
</table>

See Also TEC:LIMit:TLO?

TEC:LIMit:TLO?

Synopsis Query the low temperature limit

Syntax TEC:LIMit:TLO? [sensor index]

Details Returns the value of the low temperature limit. If the optional sensor index argument is omitted, the active sensor is used. See TEC:LIMit:TLO for a definition of sensor index argument and the limit response value.

See Also TEC:LIMit:TLO

TEC:LIMit:V

Synopsis Set the TEC voltage limit

Syntax TEC:LIMit:V limit

Details Sets the TEC voltage limit.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>VTEmax</td>
<td>TEC voltage limit, in volts</td>
</tr>
</tbody>
</table>

Only supported on later versions of 3.x firmware.

See Also TEC:LIMit:ITE, TEC:V?, TEC:LIMit:V?

TEC:LIMit:V?

Synopsis Query the TEC voltage limit

Syntax TEC:LIMit:V?

Details Returns the value of the TEC voltage limit. See TEC:LIMit:V for a definition of the limit response value.

Only supported on later versions of 3.x firmware.

See Also TEC:LIMit:V

TEC:MODE?

Synopsis Query the TEC control mode

Syntax TEC:MODE?
Details
Returns the TEC control mode.

Response Value Description
--- --- ----------
mode T Temperature control mode
 R Sensor control mode
 ITE Current control mode

See Also TEC:MODE:R, TEC:MODE:T; TEC:MODE:ITE

TEC:MODE:ITE
Synopsis Set current control mode
Syntax TEC:MODE:ITE
Details Changes the set point to amps and sensor measurement to degrees Celsius.

Not available in 5230 TECSource.

See Also TEC:MODE?, TEC:MODE:T; TEC:MODE:R

TEC:MODE:R
Synopsis Set sensor control mode
Syntax TEC:MODE:R
Details Changes the set point and sensor measurement to ohms.

See Also TEC:MODE?, TEC:MODE:T, TEC:MODE:ITE

TEC:MODE:T
Synopsis Set temperature control mode
Syntax TEC:MODE:T
Details Changes the set point and sensor measurement to degrees Celsius.

See Also TEC:MODE?, TEC:MODE:R, TEC:MODE:ITE

TEC:MOUNT
Synopsis Set the mount type
Syntax TEC:MOUNT mount
Details Set the mount type to preset controller to mount’s operating parameters.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mount</td>
<td>204, 205, 207, 207-150, 214, 215, 224, 226, 234, 242, 264, 264-150, 274, 284, 284-150, 286, 286-150, or USER</td>
<td>Mount type</td>
</tr>
</tbody>
</table>
Not available in 5230 TECSource. The above list of mounts will expand as new mounts are added.

See Also TEC:MOUNT?

TEC:MOUNT?

Synopsis Query the mount type

Syntax TEC:MOUNT?

Details Returns the mount type. See TEC:MOUNT for a definition of the *mount* response value.

See Also TEC:MOUNT

TEC:OUTput

Synopsis Set the TEC output state

Syntax TEC:OUTput *state*

Details Turns the TEC output on or off.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>Turn the output off</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Turn the output on</td>
</tr>
</tbody>
</table>

See Also TEC:OUTput?

TEC:OUTput?

Synopsis Query the TEC output state

Syntax TEC:OUTput?

Details Returns the TEC output state. See TEC:OUT for a definition of the *state* response value.

See Also TEC:OUTput

TEC:PDI

Synopsis Sets the PID parameters

Syntax TEC:PDI *p*, [i], [d]*

Details Sets PID parameters of the control loop when the GAIN is set to PID.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>The Proportional term, can be from 0 to 10</td>
</tr>
<tr>
<td>i</td>
<td>The Integral term, can be from 0 to 10</td>
</tr>
<tr>
<td>d</td>
<td>The Derivative term, can be from 0 to 10</td>
</tr>
</tbody>
</table>

The *i* and *d* values can be omitted, such that value commands might be:

- TEC:PDI 1
- TEC:PDI 1,2
- TEC:PDI 1,2,3
But the following is not valid:
TEC:PID 1,,3

See Also TEC:PID?, TEC:GAIN

TEC:PID?

Synopsis Queries the TEC PID parameters

Syntax TEC:PID?

Details Returns the TEC PID parameters used when GAIN is set to PID.

See Also TEC:PID, TEC:GAIN

TEC:R

Synopsis Set the sensor set point

Syntax TEC:R setpoint

Details Sets the sensor set point. It must be within the low and high sensor limits.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| setpoint | Sensor set point:
| | Thermistors in kΩ
| | AD590s in µA
| | LM335s in mV
| | RTDs in Ω |

See Also TEC:SET:R?

TEC:R?

Synopsis Query the actual sensor value

Syntax TEC:R? [sensor index]

Details Returns the actual (measured) sensor value. If the optional sensor index argument is omitted, the active sensor is used.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensor index</td>
<td>1 to 7</td>
<td>Sensor index</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| sensor value | Actual sensor value:
| | Thermistors in kΩ
| | AD590s in µA
| | LM335s in mV
| | RTDs in Ω |

See Also TEC:T
TEC:SENsor

Synopsis
Set the sensor type

Syntax
TEC:SENsor sensor type [, sensor index]

Details
Sets the sensor type. Note that a sensor type of 0 (disabled) can only be selected on non-active sensors. If the optional *sensor index* argument is omitted, the active sensor is used.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor type</td>
<td>0</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100uA Thermistor</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10uA Thermistor</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>LM335</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>AD590</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>RTD</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>RTD (4-wire sense)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1mA Thermistor</td>
</tr>
</tbody>
</table>

Sensor index
1 to max
Sensor index

The *sensor index* value is only valid on instruments with multiple sensor inputs, such as the 5400.

The 5230 only supports the 10uA Thermistor setting (TEC:SENS 2). Any other value will generate an error.

See Also
TEC:SENsor?

TEC:SENsor?

Synopsis
Query the sensor type

Syntax
TEC:SENsor? [sensor index]

Details
Returns the active sensor. See the TEC:SENsor command for a definition of the *sensor index* argument and *sensor response*.

See Also
TEC:SENsor

TEC:SET:ITE?

Synopsis
Query current set point

Syntax
TEC:SET:ITE?

Details
Returns the current set point. See TEC:ITE for a definition of the *setpoint* response value.

Not available in 5230 TECSource.

See Also
TEC:ITE

TEC:SET:R?

Synopsis
Query sensor set point
TEC:SET:R?

Syntax

```
TEC:SET:R?
```

Details

Returns the sensor set point. See TEC:R for a definition of the setpoint response value.

See Also

TEC:R

TEC:SET:T?

Synopsis

Query temperature set point

Syntax

```
TEC:SET:T?
```

Details

Returns the temperature set point. See TEC:T for a definition of the setpoint response value.

See Also

TEC:T

TEC:STB?

Synopsis

Query the TEC status byte

Syntax

```
TEC:STB?
```

Details

Returns a summary of the enabled conditions within the TEC condition and event registers. These bits mirror the bits in the Status Byte Register.

<table>
<thead>
<tr>
<th>Response Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>0</td>
<td>Event status register summary</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Condition status register summary</td>
</tr>
</tbody>
</table>

The values are additive, so a return value of 0, 1, 2, or 3 is possible.

See Also

TEC:STEP

Synopsis

Set TEC step size

Syntax

```
TEC:STEP size
```

Details

The command sets the TEC step size used by the TEC:DEC or TEC:INC commands.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>1 to 65000</td>
<td>Step size</td>
</tr>
</tbody>
</table>

The size value corresponds to the resolution of the set point, regardless of control mode or sensor. For example, if the temperature resolution is 0.01°C, then a step of 1 would mean a change of 0.01°C. Likewise, for example, RTDs, which typically have a display resolution of 0.01Ω, a step of one would mean a change of 0.01Ω.

See Also

TEC:DEC, TEC:INC, TEC:STEP?

TEC:STEP?

Synopsis

Query TEC step size

Syntax TEC:STEP?

Details Returns the TEC step size. See TEC:STEP for a definition of the size response value.

See Also TEC:STEP

TEC:T

Synopsis Set the temperature set point

Syntax TEC:T *setpoint*

Details Sets the temperature set point. It must be within the low and high temperature limits.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setpoint</td>
<td>Temperature set point, in degrees Celsius</td>
</tr>
</tbody>
</table>

See Also TEC:SET:T?, TEC:TRATE

TEC:T?

Synopsis Query the actual temperature

Syntax TEC:T? [*sensor index*]

Details Returns the actual (measured) sensor temperature. If the optional *sensor index* argument is omitted, the active sensor is used.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensor index</td>
<td>Sensor index</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>Actual sensor temperature, in degrees Celsius</td>
</tr>
</tbody>
</table>

See Also TEC:T

TEC:TOLerance

Synopsis Set the TEC tolerance criteria

Syntax TEC:TOLerance *tolerance, time*

Details The TEC:TOLerance command allows control over when the output of the temperature controller is considered in tolerance (or stable), in order to satisfy the tolerance condition of the operation complete definition. When used in conjunction with the *WAI command, it can control when the next command is processed, delaying processing until the output stabilizes at its set point.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tolerance</td>
<td>0.01 to 10</td>
<td>Tolerance, in °C</td>
</tr>
<tr>
<td>time</td>
<td>0.1 to 50</td>
<td>Time window in seconds</td>
</tr>
</tbody>
</table>

To be considered in tolerance, the measured temperature must be within the set point plus or minus the *tolerance* value (the tolerance window) for *time* seconds. Any time it leaves the tolerance window, the timer will reset to zero and begin counting the next time it enters the tolerance window.
In sensor control mode, the tolerance is fixed at 0.01kΩ (100µA thermistor), 0.1kΩ (10µA thermistor), 0.1µA (AD590), 1mV (LM335), and 0.1Ω (RTD).

See Also

TEC:TOlerance?

TEC:TOlerance?

Synopsis
Query the TEC tolerance criteria

Syntax
TEC:TOlerance?

Details
Returns the value of the TEC tolerance criteria. See TEC:TOlerance for a definition of the tolerance and time response values.

See Also
TEC:TOlerance

TEC:TRATE

Synopsis
Set the target temperature slew rate

Syntax
TEC:TRATE rate

Details
Sets the desired temperature slew rate. Set to 0 to disable, or to a maximum of 100°C/minute.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>Temperature slew rate, in degrees Celsius per minute</td>
</tr>
</tbody>
</table>

Not supported on all instruments.

See Also
TEC:SET:T?

TEC:TRATE?

Synopsis
Query the target temperature slew rate set point

Syntax
TEC:TRATE?

Details
Returns the slew rate as set by the TEC:TRATE command.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>Temperature slew rate, in degrees Celsius per minute</td>
</tr>
</tbody>
</table>

Not supported on all instruments.

See Also
TEC:T

TEC:TSTEP

Synopsis
Set the temperature set point step size

Syntax
TEC:TSTEP step size
Details

Sets the desired temperature step size. Does not affect temperature set points sent via the TEC:T command, only the size of the change for each tick of the adjustment knob on the front panel.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>step size</td>
<td>1</td>
<td>0.001°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.005°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.01°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.05°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.1°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.5°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5°C per knob tick</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10°C per knob tick</td>
</tr>
</tbody>
</table>

Step size cannot be set below the measurement resolution of the instrument. For example, if the temperature measurement resolution is 0.01°C, the smallest allowable step size is 0.01. For instrument that do not allow front panel adjustments, this command has no effect.

See Also

TEC:TSTEP?

TEC:TSTEP?

Synopsis

Query the temperature set point step size

Syntax

TEC:TSTEP?

Details

Returns the temperature step size index. See TEC:TSTEP for a definition of the step size return value.

See Also

TEC:TSTEP

TEC:USERCAL:EDIT

Synopsis

Enable or disabled user calibration editing

Syntax

TEC:USERCAL:EDIT enable

Details

Sets the edit enable state for user calibration. A TEC:USERCAL:PUT command will fail until the editing is enabled with this command. The edit state will automatically be set to false after a *RST command or power cycle.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>User calibration editing disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>User calibration editing enabled</td>
</tr>
</tbody>
</table>

This is a global command: enabling/disabling user calibration editing for one channel will enable/disable for all channels in the system.

See Also

TEC:USERCAL:EDIT?, TEC:USERCAL:PUT

Support

This function is only available in firmware version 1.30 and later.
TEC:USERCAL:EDIT?

Synopsis Query the state of the user calibration edit enable flag

Syntax TEC:USERCAL:EDIT?

Details Returns 0 if user calibration editing is disabled, and 1 if user calibration editing is enabled.

See Also TEC:USERCAL:EDIT

Support This function is only available in firmware version 1.30 and later.

TEC:USERCAL:GET?

Synopsis Query a TEC USERCAL setting

Syntax TEC:USERCAL:GET? index [, sensor index]

Details Returns the slope and offset compensation values for a specific user calibration index. See TEC:USERCAL:PUT for a definition of the index and sensor index arguments and slope and offset response values.

See Also TEC:USERCAL:PUT

Support This function is only available in firmware version 1.30 and later. Only limited indexes are available in pre-2.0 firmware (indexes 4, 5, 9, and 10). For version 1.xx firmware, see the controller’s manual for details on for the calibration data is managed.

TEC:USERCAL:GETALL?

Synopsis Query all TEC USERCAL settings

Syntax TEC:USERCAL:GETALL? add terminator

Details Returns the slope and offset compensation values for all user calibration indexes. If add terminator is non-zero, command terminator (CR, LF, or CR/LF) will be sent after each index. See LASer:USERCAL:PUT for a definition of the index argument and slope and offset response values.

See Also TEC:USERCAL:PUT

Support This function is only available in firmware version 1.30 and later.

TEC:USERCAL:PUT

Synopsis Sets a USERCAL value

Syntax TEC:USERCAL:PUT index, slope, offset [, sensor index]

Details The command sets the user calibration setting for a specific index, allowing for user compensation of measurements or set points. The default value for all slopes is 1, and the default value for all offsets is 0.

Compensation is applied according to the following formula:
compensated = slope * uncompensated + offset

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
<td>ITE set point</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ITE measurement*</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>VTE measurement*</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Thermistor 10µA measurement</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Thermistor 100µA measurement</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Thermistor 1mA measurement</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>LM335 measurement</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>AD950 measurement</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>RTD measurement</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>RTD 4-wire measurement</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>VTE 4-wire measurement*</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Analog output set point</td>
</tr>
</tbody>
</table>

Slope compensation
Offset compensation
Sensor index

TEC:USERCAL:PUT is only supported on certain instruments. Not all indexes are supported in every instrument. See your user’s manual for details on what measurements are supported.

* When calibrating ITE measurement, VTE measurement, or VTE 4-wire measurement, use positive currents/voltages during the calibration process.

You must enable editing of user calibration values with the TEC:USERCAL:EDIT command.

See Also
TEC:USERCAL:EDIT, TEC:USERCAL:GET?

Support
This function is only available in firmware version 1.30 and later. Only limited indexes are available in pre-2.0 firmware (indexes 4, 5, 9, and 10). For version 1.xx firmware, see the controller’s manual for details on how the calibration data is managed.

TEC:USERCAL:RESET
Synopsis
Resets all TEC user calibration settings to factory defaults

Syntax
TEC:USERCAL:RESET

Details
Resets all TEC user calibration slopes to 1 and all offsets to 0.

See Also
TEC:USERCAL:EDIT

Support
This function is only available in firmware version 1.30 and later.

TEC:V?
Synopsis
Query the actual TEC voltage

Syntax
TEC:V?

Details
Returns the actual (measured) TEC voltage.
Response

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
</tr>
<tr>
<td>Actual TEC voltage, in volts</td>
</tr>
</tbody>
</table>

See Also

'TEC:T'

TEC:VSENSE

Synopsis

Select local or remote voltage sense

Syntax

TEC:VSENSE select

Details

For instruments that support selectable local/remote voltage sense, this command selects local or remote sense.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>select</td>
<td>0</td>
<td>Local voltage sense</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Remote voltage sense</td>
</tr>
</tbody>
</table>

See Also

'TEC:VSENSE?'

Support

Only supported on instrument equipped with 4-wire voltage sense capability. See your controller’s manual for more details.

TEC: VSENSE?

Synopsis

Queries the voltage sense selection.

Syntax

TEC:VSENSE?

Details

For instruments that support selectable local/remote voltage sense, this command returns the select value. See the TEC:VSENSE command for more information.

See Also

'TEC:VSENSE'

Support

Only supported on instrument equipped with 4-wire voltage sense capability. See your controller’s manual for more details.

TERM

Synopsis

Set response terminator

Syntax

TERM terminator

Details

This command controls the termination characters used for responses to queries.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminator</td>
<td>0 or 1</td>
<td><CR><LF></td>
</tr>
<tr>
<td></td>
<td>2 or 3</td>
<td><CR></td>
</tr>
<tr>
<td></td>
<td>4 or 5</td>
<td><LF></td>
</tr>
<tr>
<td></td>
<td>6 or 7</td>
<td>no terminator</td>
</tr>
</tbody>
</table>

See Also

'TERM?'
TERM?

Synopsis
Query response terminator

Syntax
TERM?

Details
Returns the current response terminator setting. See the TERM command for a complete definition of possible return values.

See Also
TERM

TERMINAL

Synopsis
Set terminal mode

Syntax
TERMINAL enable

Details
The command controls the echo of characters back to the PC, typically used when manually controlling the instrument via a terminal software package such as Hyperterminal.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>0</td>
<td>Echo disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Echo enabled</td>
</tr>
</tbody>
</table>

See Also
TERMINAL

TERMINAL?

Synopsis
Query terminal mode

Syntax
TERMINAL?

Details
Returns the current response terminal mode setting. See the TERMINAL command for a complete definition of possible return values.

See Also
TERMINAL

TIME?

Synopsis
Query run time

Syntax
TIME?

Details
Returns the elapsed time since the unit has been turned on. Format is in HH:MM:SS.ss, where HH is hours, MM is minutes, SS is seconds, and ss is hundredths of a second.

See Also
TIMER?

TIMER?

Synopsis
Query time since last TIMER?

Syntax
TIMER?

Details
Returns the elapsed time since the last TIMER? query was received, or, if this is the first TIMER? query, the time since unit has been turned on. Format is in HH:MM:SS.ss, where HH is hours, MM is minutes, SS is seconds, and ss is hundredths of a second.
<table>
<thead>
<tr>
<th>See Also</th>
<th>TIME?</th>
</tr>
</thead>
</table>

VER?

Synopsis
Query the firmware version

Syntax
VER?

Details
Returns the firmware version. This is the same information that is part of the *IDN? query.

See Also
*IDN?
Error Messages

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-003</td>
<td>Factory EEPROM Error</td>
<td>The factory section of the EEPROM, which contains the calibration data and system configuration systems, is corrupted. The unit must be returned to the factory for repair.</td>
</tr>
<tr>
<td>E-004</td>
<td>User EEPROM Error</td>
<td>The user settings section of the EEPROM, which contains user editable set points, modes, etc., is corrupted. To repair the corruption, the unit was reset to factory defaults.</td>
</tr>
<tr>
<td>E-005</td>
<td>User Reset EEPROM</td>
<td>The user reset the unit to factory defaults. This is a notification message only.</td>
</tr>
<tr>
<td>E-006</td>
<td>User EEPROM Failed</td>
<td>The user settings section of the EEPROM, which contains user editable set points, modes, etc., is corrupted. The corruption cannot be repaired automatically; please contact the factory for assistance.</td>
</tr>
<tr>
<td>E-007</td>
<td>Preset EEPROM Failed</td>
<td>The preset settings section of the EEPROM, which contains user section defaults, is corrupted. The corruption cannot be repaired automatically. Please contact the factory for assistance.</td>
</tr>
<tr>
<td>E-008</td>
<td>User EEPROM Failed</td>
<td>The user settings section of the EEPROM, which contains user editable set points, modes, etc., is corrupted, and the preset section cannot restore it. The corruption cannot be repaired automatically, please contact the factory for assistance.</td>
</tr>
<tr>
<td>E-009</td>
<td>Output Disabled</td>
<td>Added to every ERR? or ERRSTR? query when the EEPROM is corrupted. The output cannot be turned on until the corruption has been repaired.</td>
</tr>
<tr>
<td>E-100</td>
<td>General Error</td>
<td>The error code is non-specific, and is generally used when no other error code is suitable.</td>
</tr>
<tr>
<td>E-102</td>
<td>Message too long</td>
<td>The message is too long to process (USB/Serial only).</td>
</tr>
<tr>
<td>E-104</td>
<td>Type not allowed</td>
<td>The RADix type was invalid</td>
</tr>
<tr>
<td>E-123</td>
<td>Path not found</td>
<td>The message used an invalid path command (USB/Serial only).</td>
</tr>
<tr>
<td>E-124</td>
<td>Data mismatch</td>
<td>The message contained data that did not match the expected format (USB/Serial only).</td>
</tr>
<tr>
<td>E-126</td>
<td>Too few or too many elements</td>
<td>The command requires more or less than the number of parameters actually supplied.</td>
</tr>
<tr>
<td>E-127</td>
<td>Change not allowed</td>
<td>An attempt was made to change a parameter that cannot be changed, or is currently read-only.</td>
</tr>
<tr>
<td>E-128</td>
<td>Script terminated</td>
<td>An executing script or *WAI command was terminated via Ctrl-X.</td>
</tr>
<tr>
<td>E-201</td>
<td>Data out of range</td>
<td>The message attempted to set a value that was outside the allowable range (USB/Serial only).</td>
</tr>
<tr>
<td>E-202</td>
<td>Invalid data type</td>
<td>When trying to parse the message, the data was in an invalid format (USB/Serial only).</td>
</tr>
<tr>
<td>E-204</td>
<td>Suffix not valid</td>
<td>An invalid number base suffix (radix) was encountered when parsing a number (USB/Serial only).</td>
</tr>
<tr>
<td>E-217</td>
<td>Configuration Recall failed</td>
<td>An attempt recall a configuration failed. This can be caused if no configuration exists in the selected slot, the slot number is out of range, or if the configuration is corrupted.</td>
</tr>
<tr>
<td>E-218</td>
<td>Configuration Save failed</td>
<td>At attempt to save a configuration failed. This can be caused if the slot number is out of range, or the configuration memory is corrupted.</td>
</tr>
<tr>
<td>E-220</td>
<td>Script Save Failed</td>
<td>At attempt to save a script failed. This can be caused if the script number is out of range, or the script memory is corrupted.</td>
</tr>
<tr>
<td>E-221</td>
<td>Cannot embed script</td>
<td>A script was executed that contained a reference to another script.</td>
</tr>
<tr>
<td>E-222</td>
<td>Cannot execute script</td>
<td>At attempt to execute a script failed. This can be caused if the script number is out of range, no script exists for the selected index, or the script memory is corrupted.</td>
</tr>
<tr>
<td>E-303</td>
<td>Input buffer overrun</td>
<td>The command input buffer overran, which can be caused by excessively long command strings or improperly terminated commands.</td>
</tr>
<tr>
<td>E-402</td>
<td>Sensor open, output turned off</td>
<td>A sensor open circuit was detected and the output was turned off.</td>
</tr>
<tr>
<td>E-403</td>
<td>Module open, output turned off</td>
<td>A Peltier module open circuit was detected and the output was turned off.</td>
</tr>
<tr>
<td>E-404</td>
<td>I limit, output turned off</td>
<td>A current limit was detected and the output was turned off.</td>
</tr>
<tr>
<td>E-405</td>
<td>V limit, output turned off</td>
<td>A voltage limit was detected and the output was turned off.</td>
</tr>
<tr>
<td>E-406</td>
<td>Thermistor resistance limit, output turned off</td>
<td>The thermistor resistance limit (high or low) was exceeded and the output was turned off.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
<td>Cause</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>E-407</td>
<td>Temperature limit, output turned off</td>
<td>The temperature limit (high or low) was exceeded and the output was turned off.</td>
</tr>
<tr>
<td>E-409</td>
<td>Sensor change, output off</td>
<td>The sensor was changed while the output was on, and the output was turned off.</td>
</tr>
<tr>
<td>E-410</td>
<td>Temperature was out of tolerance, output turned off</td>
<td>The temperature went out of tolerance and the output was turned off.</td>
</tr>
<tr>
<td>E-415</td>
<td>Sensor short, output turned off</td>
<td>A sensor short circuit was detected and the output was turned off.</td>
</tr>
<tr>
<td>E-416</td>
<td>Calibration failure</td>
<td>The calibration process failed due to improper setup, an interfering action (set point change, output on/off), or unexpected results.</td>
</tr>
<tr>
<td>E-419</td>
<td>TEC not stable</td>
<td>The TEC is considered stable if the temperature has changed less than 0.02°C for more than 20 seconds.</td>
</tr>
<tr>
<td>E-433</td>
<td>Not a TEC</td>
<td>The TEC:CHAN command attempted to select a non-TEC channel</td>
</tr>
<tr>
<td>E-434</td>
<td>Ite limit exceeds cable rating</td>
<td>The cable plugged into the unit cannot carry the current as limited by the Ite Limit setting. Lower the Ite limit to the cables capacity, or use a higher capacity cable.</td>
</tr>
<tr>
<td>E-435</td>
<td>Mode change</td>
<td>A mode change occurred when the output was on, and the output was turned off.</td>
</tr>
<tr>
<td>E-436</td>
<td>AutoTune Failed</td>
<td>The AutoTune process failed.</td>
</tr>
<tr>
<td>E-437</td>
<td>AutoTune Required T Mode</td>
<td>The AutoTune process was cancelled because the instrument was not in T mode.</td>
</tr>
<tr>
<td>E-438</td>
<td>Thermal Trip</td>
<td>The thermal limit of the heat sink was reached, output turned off.</td>
</tr>
<tr>
<td>E-439</td>
<td>Thermal Run-Away</td>
<td>Thermal run-away, output off</td>
</tr>
<tr>
<td>E-450</td>
<td>TECPak analog set disconnected</td>
<td>An attempt to turn on the TEC output was prevented because the instrument was configured to use the analog set point input and no analog set point was detected.</td>
</tr>
<tr>
<td>E-501</td>
<td>Interlock shutdown output</td>
<td>The interlock was open when the output was on (or was attempting to turn on)</td>
</tr>
<tr>
<td>E-504</td>
<td>Laser current limit disabled output</td>
<td>The laser output was turned off because a current limit was detected and the corresponding bit in the OUTOFF register was set.</td>
</tr>
<tr>
<td>E-505</td>
<td>Laser voltage limit disabled output</td>
<td>The laser voltage exceeded the voltage limit and the output was turned off.</td>
</tr>
<tr>
<td>E-506</td>
<td>Laser photodiode current limit disabled output</td>
<td>The laser output was turned off because a photodiode current limit was detected and the corresponding bit in the OUTOFF register was set.</td>
</tr>
<tr>
<td>E-507</td>
<td>Laser photodiode power limit disabled output</td>
<td>The laser output was turned off because a photodiode power limit was detected and the corresponding bit in the OUTOFF register was set.</td>
</tr>
<tr>
<td>E-508</td>
<td>TEC off disabled output</td>
<td>The laser output was turned off because the TEC was off and the corresponding bit in the OUTOFF register was set.</td>
</tr>
<tr>
<td>E-509</td>
<td>Laser short circuit disabled output</td>
<td>The laser output was turned off because a short condition was detected and the corresponding bit in the OUTOFF register was set.</td>
</tr>
<tr>
<td>E-510</td>
<td>Laser out of tolerance disabled output</td>
<td>The laser output was turned off because an out-of-tolerance condition was detected and the corresponding bit in the OUTOFF register was set.</td>
</tr>
<tr>
<td>E-511</td>
<td>Laser control error disabled output</td>
<td>A hardware control error was detected which forced a shutdown of the laser output.</td>
</tr>
<tr>
<td>E-512</td>
<td>Power failure</td>
<td>A power failure was detected.</td>
</tr>
<tr>
<td>E-514</td>
<td>Laser mode change disabled output</td>
<td>A change in the operating mode of the Laser driver while the output was on shutdown the output.</td>
</tr>
<tr>
<td>E-516</td>
<td>Incorrect configuration for calibration to start</td>
<td>The Laser driver was not configured properly, including the mode and output on state, to be able to start the desired calibration process.</td>
</tr>
<tr>
<td>E-517</td>
<td>Calibration must have the output on to start</td>
<td>The laser output must be on for the calibration process to start.</td>
</tr>
<tr>
<td>E-521</td>
<td>TEC temperature limit disabled output</td>
<td>The laser output was turned off because the TEC temperature limit was exceeded and the corresponding bit in the OUTOFF register was set.</td>
</tr>
<tr>
<td>E-534</td>
<td>Po mode selected with PD Response set to zero</td>
<td>Attempted to select Po mode and PD Response was zero, or Laser driver was in Po mode and PD Response was set to zero.</td>
</tr>
<tr>
<td>E-535</td>
<td>Calibration cancelled</td>
<td>The active calibration process was cancelled.</td>
</tr>
<tr>
<td>E-536</td>
<td>Intermittent contact detected</td>
<td>The instrument detected an intermittent contact and shut down the laser output. If this is triggering falsely (such as in a noisy environment), the intermittent contact detection can be disabled in the main menu.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
<td>Cause</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>E-537</td>
<td>Thermal Limit Exceeded</td>
<td>The thermal load inside the instrument is too high, and the output was shutdown to protect the instrument.</td>
</tr>
<tr>
<td>E-538</td>
<td>Sensor Limits Exceeded</td>
<td>A laser temperature sensor exceeded the resistance limits, laser output turned off.</td>
</tr>
<tr>
<td>E-539</td>
<td>Temperature Limits Exceeded</td>
<td>A laser temperature sensor exceeded the temperature limits, laser output turned off.</td>
</tr>
<tr>
<td>I-700</td>
<td>Config saved</td>
<td>Instrument configuration successfully stored.</td>
</tr>
<tr>
<td>I-701</td>
<td>Config loaded</td>
<td>Instrument configuration successfully loaded.</td>
</tr>
<tr>
<td>I-703</td>
<td>Laser usercal reset</td>
<td>The user-provided calibration for the laser measurements and set points reset by the user.</td>
</tr>
<tr>
<td>I-704</td>
<td>TEC usercal reset</td>
<td>The user-provided calibration for the TEC measurements and set points reset by the user.</td>
</tr>
<tr>
<td>W-800</td>
<td>Remote Voltage Sense Low</td>
<td>Notification message only: On instruments with remote voltage sense, the remote voltage measurement is much lower than the voltage at the output connector. This is only a warning, and does not indicate an actual problem.</td>
</tr>
<tr>
<td>W-801</td>
<td>Burst Mode, Hold Output</td>
<td>Notification message only: When in lo (Burst) mode, to turn the output on, the Output button must be held down for at least one second. If it is held down for less than one second, this warning message informs the user than the Output button press did not turn the output on.</td>
</tr>
<tr>
<td>W-803</td>
<td>User reset to factory defaults</td>
<td>Notification message only: User pressed key sequence on start-up to reset unit to factory defaults.</td>
</tr>
<tr>
<td>W-805</td>
<td>User recall turned outputs off</td>
<td>Notification message only: A user configuration was recalled from memory while the outputs were on, resulting in the outputs being turned off.</td>
</tr>
<tr>
<td>W-806</td>
<td>No function key assigned</td>
<td>Notification message only: User attempted to execute a function key action that was not assigned.</td>
</tr>
<tr>
<td>E-980</td>
<td>Module Offline</td>
<td>Communications was attempted to off-line module.</td>
</tr>
<tr>
<td>E-981 thru E-984</td>
<td>Slave module X communication failure</td>
<td>A communication failure to the referenced slave module was detected. Slave module taken offline.</td>
</tr>
<tr>
<td>E-988</td>
<td>Power supply comm failure</td>
<td>Failure to communicate with internal power supply. If problem persists, contact factory.</td>
</tr>
<tr>
<td>E-989</td>
<td>Network interface error</td>
<td>Instrument could not communicate with the network module. Ethernet communications may be offline until next power cycle.</td>
</tr>
<tr>
<td>E-990 thru E-997</td>
<td>Hardware-related errors</td>
<td>A hardware related error occurred. Attempt a power cycle to resolve. If error continues to occur, contact factory.</td>
</tr>
<tr>
<td>E-998</td>
<td>Command not supported</td>
<td>A command was recognized but not supported by the Laser driver.</td>
</tr>
<tr>
<td>E-999</td>
<td>Non-specific error</td>
<td>A non-specific error was encountered.</td>
</tr>
</tbody>
</table>
1201 Prospect Street, San Luis Obispo, CA 93401
Tel: (805) 543-1302 Fax: (805) 543-1303
sales@arroyoinstruments.com
www.arroyoinstruments.com